1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
#define deb(...)
#define DBP(...)
using namespace std;
using   ll         = long long;
using   vi         = vector<int>;
using   pii        = pair<int, int>;
#define pb           push_back
#define mp           make_pair
#define x            first
#define y            second
#define rep(i, b, e) for (int i = (b); i < (e); i++)
#define each(a, x)   for (auto& a : (x))
#define all(x)       (x).begin(), (x).end()
#define sz(x)        int((x).size())

void run();

int main() {
	cin.sync_with_stdio(0); cin.tie(0);
	cout << fixed << setprecision(12);
	run();
	cout << flush; _Exit(0);
}

struct Node {
	vector<pii> seq; // sorted pairs (a[i], i) for i in [b;e)
	vi left; // left[j] = how many elements in seq[0:j) are in [b;m)
	vector<ll> val; // val[j] = suffix sum for seq[j:]
	ll lazy = 0; // increase for all subtree values
};

vector<Node> tree;
int len, threshold;

void build(int i, int b, int e) {
	if (i >= threshold) tree[i].val.resize(sz(tree[i].seq)+1);
	if (i >= len) return;

	int m = (b+e) / 2;
	rep(j, 0, 2) tree[i*2+j].seq.reserve((m-b)/2);

	tree[i].left.reserve(sz(tree[i].seq)+1);
	tree[i].left.pb(0);

	each(p, tree[i].seq) {
		tree[i].left.pb(tree[i].left.back() + (p.y < m));
		tree[i*2 + (p.y >= m)].seq.pb(p);
	}

	build(i*2, b, m);
	build(i*2+1, m, e);
}

void doUpdate(int i, int b, int e, int prefix, ll add) {
	if (prefix <= b) return;
	if (e <= prefix) {
		tree[i].lazy += add;
		return;
	}
	if (i >= threshold) {
		ll acc = 0;
		for (int j = sz(tree[i].seq)-1; j >= 0; j--) {
			if (tree[i].seq[j].y < prefix) acc += add;
			tree[i].val[j] += acc;
		}
	}
	int m = (b+e) / 2;
	doUpdate(i*2, b, m, prefix, add);
	doUpdate(i*2+1, m, e, prefix, add);
}

ll doQuery(int i, int b, int e, int prefix, int from, ll lazy) {
	if (prefix <= b) return 0;
	lazy += tree[i].lazy;
	if (e <= prefix && i >= threshold) return tree[i].val[from] + lazy * (sz(tree[i].seq)-from);
	int m = (b+e) / 2, left = tree[i].left[from];
	return doQuery(i*2, b, m, prefix, left, lazy) + doQuery(i*2+1, m, e, prefix, from-left, lazy);
}

void update(int prefix, ll add) {
	doUpdate(1, 0, len, prefix, add);
}

ll query(int prefix, int day) {
	int from = int(lower_bound(all(tree[1].seq), mp(day, -1)) - tree[1].seq.begin());
	return doQuery(1, 0, len, prefix, from, 0);
}

ll getCost(ll m, ll z, ll t) {
	return m*len/t + z*t*4;
}

void run() {
	int n, m, z;
	cin >> n >> m >> z;

	vector<pii> seq(n);
	rep(i, 0, n) {
		cin >> seq[i].x;
		seq[i].y = i;
	}

	len = 1;
	while (len < n) len *= 2;

	ll cost = INT64_MAX;
	for (int t = 1; t <= len; t *= 2) {
		ll alt = getCost(m, z, t);
		if (alt < cost) {
			threshold = t;
			cost = alt;
		}
	}

	sort(all(seq));
	tree.resize(len*2);
	tree[1].seq = std::move(seq);
	build(1, 0, len);

	rep(q, 0, m+z) {
		int i, p, w;
		cin >> i >> p >> w;
		if (i == 1) {
			update(p, w);
		} else if (i == 2) {
			cout << query(p, w) << '\n';
		} else {
			assert(0);
		}
	}
}