1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <bits/stdc++.h>

#define ll long long
#define fors(u, n, s) for(ll u = (s); u < (n); u++)
#define foru(u, n) fors(u, n, 0)
#define f first
#define s second
#define vec vector
#define pb push_back
#define ir(a, b, x) (((a) <= (x)) && ((x) <= (b)))

using namespace std;

const int N = 110;
const int M = 210;
int n, m;

ll p[N];
vec<pair<int, ll>> edges[N];

const int P = 1e9;
const int K = 2e5;
const int L = (P/K)+100;

bool left_reachable[N][K];

void reset_left(){
	foru(i, n) foru(j, K) left_reachable[i][j] = false;
}

void left_dfs(int node, ll val) {
	if(val >= K) return;
	if(left_reachable[node][val]) return;
	if(val > p[node]) return;
	left_reachable[node][val] = true;
	for(auto i : edges[node]) {
		ll next_val = val*i.s;
		if(next_val >= K) continue;
		left_dfs(i.f, next_val);
	}
}

ll biggest[N][K];

void reset_biggest(){
	foru(i, n) foru(j, K) biggest[i][j] = -1;
}

ll find_biggest(int node, ll max_mult) {
	// cout << "CALLED BIGGEST " << node << " " << max_mult << endl;
	if(max_mult == 0) return 0;

	max_mult = min(max_mult, K-1LL);
	if(biggest[node][max_mult] != -1) return biggest[node][max_mult];

	if(left_reachable[node][max_mult]) {
		// cout << "BIGGEST VAL ON NODE " << node << " SMALLER THAN " << max_mult << " IS " << max_mult << endl;

		biggest[node][max_mult] = max_mult;
		return max_mult;
	}

	biggest[node][max_mult] = find_biggest(node, max_mult-1);
	// cout << "BIGGEST VAL ON NODE " << node << " SMALLER THAN " << max_mult << " IS " << biggest[node][max_mult] << endl;
	return biggest[node][max_mult];
}

ll right_limit[N][L];

void reset_right(){
	foru(i, n) foru(j, L) right_limit[i][j] = -1;
}

ll limit_in_path[N][N];

void calculate_limit_in_path(){
	foru(i, n) foru(j, n) limit_in_path[i][j] = 0;
	
	foru(i, n) limit_in_path[i][i] = p[i];

	foru(i, n) for(auto e : edges[i]) {
		int j = e.f;
		ll w = e.s;

		if(w != 1) continue;

		limit_in_path[i][j] = min(p[i], p[j]);
	}

	foru(i, n) {
		foru(a, n) foru(b, n) {
			limit_in_path[a][b] = max(
				limit_in_path[a][b],
				min(limit_in_path[a][i], limit_in_path[i][b])
			);
		}
	}

	// cout << "DEBUG: " << endl;
	// foru(i, n) {
	// 	foru(j, n) {
	// 		cout << limit_in_path[i][j] << " ";
	// 	}
	// 	cout << endl;
	// }
}

ll get_right_limit(int node, ll val){
	// cout << "CALLED " << node << " " << val << endl;
	if(limit_in_path[node][n-1] != 0 && val == 1) return limit_in_path[node][n-1];
	if(val == 0) return 0;
	if(right_limit[node][val] != -1) return right_limit[node][val];

	ll limit = 0;

	foru(i, n) {
		ll base_limit = limit_in_path[node][i];
		if(base_limit == 0) continue;
		for(auto e : edges[i]) {
				ll mult = e.s;
				int next_node = e.f;

				if(mult == 1) continue;
				
				if(val%mult != 0) continue;
				ll next_val = val/mult;
				
				if(next_val >= L) continue;

				ll next_limit = get_right_limit(next_node, next_val);
				next_limit /= mult;
				next_limit = min(next_limit, base_limit);
				limit = max(limit, next_limit);
		}
	}

	right_limit[node][val] = limit;
	return limit;
}


void solve(){
	cin >> n >> m;

	foru(i, n) cin >> p[i];

	foru(i, n) edges[i] = {};

	foru(_i, m){
		int a, b, w; cin >> a >> b >> w; a--; b--;
		edges[a].pb({b, w});
	}

	reset_left(); left_dfs(0, 1);

	ll ans = -1;
	foru(i, K) if(left_reachable[n-1][i]) ans = i;

	reset_right(); reset_biggest(); calculate_limit_in_path();

	foru(a, n) for(auto e : edges[a]) {
		int b = e.f;
		ll mult = e.s;

		// cout << "CONCIDERING MIDDLE EDGE " << a << " " << b << " WITH MULT " << mult << endl;

		fors(i, L, 1) {
		
			ll limit = get_right_limit(b, i);			
			if(limit == 0) continue;

			// cout << endl;
			// cout << "	ASSUMING RIGHT MULT IS " << i << endl; 
			// cout << "	RIGHT LIMIT " << limit << endl;
			
			limit /= mult;
			limit = min(limit, p[a]);

			// cout << "	LIMIT BEFORE EDGE " << limit << endl;
		
			if(limit == 0) continue;

			ll left_mult = find_biggest(a, limit);

			// cout << "	BIGGEST LEFT_MULT " << left_mult << endl;
			
			if(left_mult == 0) continue;

			ans = max(ans, left_mult*i*mult);
		}
	}

	cout << ans << endl;
}


int main() {
	cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(0);

	int t; cin >> t;
	foru(_i, t) solve();
	
    return 0;
}