import numpy as np # import matplotlib.colors as mcolors # import matplotlib.pyplot as plt # import matplotlib.animation as animation def get_initial_state(size = 100): grid = np.zeros((size, size), dtype=float) # for i in range(3): # grid[0][i] = 1 # grid[1][1] = 1 for j in range(0, size, 2): for i in range(size-1): grid[j][i] = 1 for j in range(1, size-1): grid[j][0] = 1 # if j+3 < size: # grid[j+3][size-1-i] = 1 grid[-1][-1] = 1 # grid[2][-1] = 1 # grid[2][-2] = 1 # grid[1][-3] = 1 # grid[4][-1] = 1 # grid[4][-2] = 1 # grid[5][-3] = 1 # grid[0][0] = 1 # grid[0][2] = 1 # grid[0][1] = 1 # grid[1][1] = 1 # grid[2][2] = 1 # grid[0][1] = 1 # grid[2][3] = 1 # grid[3][4-1-0] = 1 # grid[3][4-1-2] = 1 # grid[3][4-1-1] = 1 # for i in range(0, size): # grid[i][i] = 1 # for i in range(3): # grid[-1][-i] = 1 # grid[2][2] = 1 # grid[2][3] = 1 # for i in range(1, size): # grid[0][i] = 1 # for i in range(1, size, 2): # grid[i][0] = 1 # grid[i-1][-1] = 1 # grid[1][0] = 1 # grid[0][1] = 1 # grid[49][49] = 1 # grid[50][50] = 1 # grid[48][51] = 1 # grid[49][51] = 1 # grid[2+1][0] = 1 # grid[2+0][1] = 1 # grid[1][0+2] = 1 # grid[0][1+2] = 1 # grid[1+2][0+2] = 1 # grid[0+2][1+2] = 1 # grid[1][4] = 1 # grid[4+1][0] = 1 # grid[4+0][1] = 1 # for i in range (1, 2): # grid[0][i] = 1 # grid[1][0] = 1 # grid[2][-1] = 1 # grid[1][1] # grid[2][1] return grid # def apply_rule(grid): # new_grid = np.copy(grid) # size = grid.shape[0] # sizey = grid.shape[1] # for i in range(size - 1): # for j in range(sizey - 1): # square = grid[i:i+2, j:j+2] # ones = np.argwhere(square == 1) # if len(ones) == 2: # if abs(ones[0][0] - ones[1][0]) == 1 and abs(ones[0][1] - ones[1][1]) == 1: # new_grid[i:i+2, j:j+2] = 1 - square # return new_grid # def visualise_evolution(size=100): # plt.rcParams['toolbar'] = 'None' # fig, ax = plt.subplots() # grid = get_initial_state(size) # seen_states = set() # step_count = 0 # img = ax.imshow(grid, cmap = mcolors.LinearSegmentedColormap.from_list("custom_gradient", ["#ECEFF4", "#5E81AC"]), interpolation='nearest') # ax.set_xticks([]) # ax.set_yticks([]) # ax.set_frame_on(False) # def update(frame): # nonlocal grid, step_count # img.set_data(grid) # ax.set_title(f'Sekunda: {step_count}') # grid_bytes = grid.tobytes() # if grid_bytes in seen_states: # print(f'Koniec po sekundzie: {len(seen_states)}') # ani.event_source.stop() # return # seen_states.add(grid_bytes) # new_grid = apply_rule(grid) # plt.pause(0.4) # transition_frames = 4 # for i in range(transition_frames): # grid = grid + (new_grid - grid) * (1 / (transition_frames - i)) # img.set_data(grid) # plt.pause(0.1) # img.set_data(grid) # step_count += 1 # ani = animation.FuncAnimation(fig, update, interval=0.0000001) # plt.show() # visualise_evolution(6) z = get_initial_state(100) for x in z: print(''.join([str(int(v)) for v in x]))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | import numpy as np # import matplotlib.colors as mcolors # import matplotlib.pyplot as plt # import matplotlib.animation as animation def get_initial_state(size = 100): grid = np.zeros((size, size), dtype=float) # for i in range(3): # grid[0][i] = 1 # grid[1][1] = 1 for j in range(0, size, 2): for i in range(size-1): grid[j][i] = 1 for j in range(1, size-1): grid[j][0] = 1 # if j+3 < size: # grid[j+3][size-1-i] = 1 grid[-1][-1] = 1 # grid[2][-1] = 1 # grid[2][-2] = 1 # grid[1][-3] = 1 # grid[4][-1] = 1 # grid[4][-2] = 1 # grid[5][-3] = 1 # grid[0][0] = 1 # grid[0][2] = 1 # grid[0][1] = 1 # grid[1][1] = 1 # grid[2][2] = 1 # grid[0][1] = 1 # grid[2][3] = 1 # grid[3][4-1-0] = 1 # grid[3][4-1-2] = 1 # grid[3][4-1-1] = 1 # for i in range(0, size): # grid[i][i] = 1 # for i in range(3): # grid[-1][-i] = 1 # grid[2][2] = 1 # grid[2][3] = 1 # for i in range(1, size): # grid[0][i] = 1 # for i in range(1, size, 2): # grid[i][0] = 1 # grid[i-1][-1] = 1 # grid[1][0] = 1 # grid[0][1] = 1 # grid[49][49] = 1 # grid[50][50] = 1 # grid[48][51] = 1 # grid[49][51] = 1 # grid[2+1][0] = 1 # grid[2+0][1] = 1 # grid[1][0+2] = 1 # grid[0][1+2] = 1 # grid[1+2][0+2] = 1 # grid[0+2][1+2] = 1 # grid[1][4] = 1 # grid[4+1][0] = 1 # grid[4+0][1] = 1 # for i in range (1, 2): # grid[0][i] = 1 # grid[1][0] = 1 # grid[2][-1] = 1 # grid[1][1] # grid[2][1] return grid # def apply_rule(grid): # new_grid = np.copy(grid) # size = grid.shape[0] # sizey = grid.shape[1] # for i in range(size - 1): # for j in range(sizey - 1): # square = grid[i:i+2, j:j+2] # ones = np.argwhere(square == 1) # if len(ones) == 2: # if abs(ones[0][0] - ones[1][0]) == 1 and abs(ones[0][1] - ones[1][1]) == 1: # new_grid[i:i+2, j:j+2] = 1 - square # return new_grid # def visualise_evolution(size=100): # plt.rcParams['toolbar'] = 'None' # fig, ax = plt.subplots() # grid = get_initial_state(size) # seen_states = set() # step_count = 0 # img = ax.imshow(grid, cmap = mcolors.LinearSegmentedColormap.from_list("custom_gradient", ["#ECEFF4", "#5E81AC"]), interpolation='nearest') # ax.set_xticks([]) # ax.set_yticks([]) # ax.set_frame_on(False) # def update(frame): # nonlocal grid, step_count # img.set_data(grid) # ax.set_title(f'Sekunda: {step_count}') # grid_bytes = grid.tobytes() # if grid_bytes in seen_states: # print(f'Koniec po sekundzie: {len(seen_states)}') # ani.event_source.stop() # return # seen_states.add(grid_bytes) # new_grid = apply_rule(grid) # plt.pause(0.4) # transition_frames = 4 # for i in range(transition_frames): # grid = grid + (new_grid - grid) * (1 / (transition_frames - i)) # img.set_data(grid) # plt.pause(0.1) # img.set_data(grid) # step_count += 1 # ani = animation.FuncAnimation(fig, update, interval=0.0000001) # plt.show() # visualise_evolution(6) z = get_initial_state(100) for x in z: print(''.join([str(int(v)) for v in x])) |