1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
# import matplotlib.colors as mcolors
# import matplotlib.pyplot as plt
# import matplotlib.animation as animation

def get_initial_state(size = 100):
    grid = np.zeros((size, size), dtype=float)
    
    # for i in range(3):
    #     grid[0][i] = 1
    # grid[1][1] = 1
    
    for j in range(0, size, 2):
        for i in range(size-1):
            grid[j][i] = 1
            
    for j in range(1, size-1):
        grid[j][0] = 1
            
            # if j+3 < size:
            #     grid[j+3][size-1-i] = 1
            
    grid[-1][-1] = 1
    
    # grid[2][-1] = 1
    # grid[2][-2] = 1
    # grid[1][-3] = 1
    
    # grid[4][-1] = 1
    # grid[4][-2] = 1
    # grid[5][-3] = 1
    
    
    
    
    # grid[0][0] = 1
    # grid[0][2] = 1
    # grid[0][1] = 1
    
    # grid[1][1] = 1
    # grid[2][2] = 1
    # grid[0][1] = 1
    # grid[2][3] = 1
    

    # grid[3][4-1-0] = 1
    # grid[3][4-1-2] = 1
    # grid[3][4-1-1] = 1
    
    
    # for i in range(0, size):
    #     grid[i][i] = 1
    
    
    # for i in range(3):
    #     grid[-1][-i] = 1
    # grid[2][2] = 1
    # grid[2][3] = 1
    
    # for i in range(1, size):
    #     grid[0][i] = 1
    
    # for i in range(1, size, 2):
    #     grid[i][0] = 1
    #     grid[i-1][-1] = 1
    
    # grid[1][0] = 1
    # grid[0][1] = 1
    
    # grid[49][49] = 1
    # grid[50][50] = 1
    
    # grid[48][51] = 1
    # grid[49][51] = 1
    
    
    
    # grid[2+1][0] = 1
    # grid[2+0][1] = 1
    # grid[1][0+2] = 1
    # grid[0][1+2] = 1
    # grid[1+2][0+2] = 1
    # grid[0+2][1+2] = 1
    # grid[1][4] = 1
    # grid[4+1][0] = 1
    # grid[4+0][1] = 1

    # for i in range (1, 2):
    #     grid[0][i] = 1
    # grid[1][0] = 1
    # grid[2][-1] = 1
    # grid[1][1]
    # grid[2][1]
        

    return grid


# def apply_rule(grid):
#     new_grid = np.copy(grid)
#     size = grid.shape[0]
#     sizey = grid.shape[1]
    
#     for i in range(size - 1):
#         for j in range(sizey - 1):
#             square = grid[i:i+2, j:j+2]
#             ones = np.argwhere(square == 1)
            
#             if len(ones) == 2:
#                 if abs(ones[0][0] - ones[1][0]) == 1 and abs(ones[0][1] - ones[1][1]) == 1:
#                     new_grid[i:i+2, j:j+2] = 1 - square  
    
#     return new_grid

# def visualise_evolution(size=100):
#     plt.rcParams['toolbar'] = 'None'
#     fig, ax = plt.subplots()
#     grid = get_initial_state(size)
#     seen_states = set()
#     step_count = 0
#     img = ax.imshow(grid, cmap = mcolors.LinearSegmentedColormap.from_list("custom_gradient", ["#ECEFF4", "#5E81AC"]), interpolation='nearest')
#     ax.set_xticks([])
#     ax.set_yticks([])
#     ax.set_frame_on(False)
    
#     def update(frame):
#         nonlocal grid, step_count
#         img.set_data(grid)
#         ax.set_title(f'Sekunda: {step_count}')
        
        
#         grid_bytes = grid.tobytes()
#         if grid_bytes in seen_states:
#             print(f'Koniec po sekundzie: {len(seen_states)}')
#             ani.event_source.stop()
#             return
        
#         seen_states.add(grid_bytes)
#         new_grid = apply_rule(grid)
        
#         plt.pause(0.4)
#         transition_frames = 4
#         for i in range(transition_frames):
#             grid = grid + (new_grid - grid) * (1 / (transition_frames - i))
#             img.set_data(grid)
#             plt.pause(0.1)
        
#         img.set_data(grid)
#         step_count += 1
    
#     ani = animation.FuncAnimation(fig, update, interval=0.0000001)
#     plt.show()

# visualise_evolution(6)
z = get_initial_state(100)
for x in z:
    print(''.join([str(int(v)) for v in x]))