1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#pragma GCC optimize("O3")
#include "bits/stdc++.h"
using namespace std;
#define rep(i,a,b) for(int i=(a); i<(b); ++i)
#define all(x) x.begin(),x.end()
#define sz(x) int(x.size())
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<vi> vvi;

template <class ForwardIt, class T, class Compare>
constexpr ForwardIt sb_lower_bound(
      ForwardIt first, ForwardIt last, const T& value, Compare comp) {
   auto length = last - first;
   while (length > 0) {
      auto rem = length % 2;
      length /= 2;
      if (comp(first[length], value)) {
         first += length + rem;
      }
   }
   return first;
}

namespace smallB{
    const int N = 1e6+500;
    const int B = 900; // nsqrt(n)

    struct wholeblock{
        int positions[B];
        int ord[B], invord[B];
        int num = 0;

        ll sum = 0; // when we update whole block
        void insert(int x){
            positions[num] = x;
            ord[num] = num;
            ++num;
        }
        void build(){
            rep(i,0,num+1) fen[i] = 0;
            sort(ord,ord+num,[&](int i, int j){
                return positions[i] < positions[j];
            });
            rep(i,0,num) invord[ord[i]] = i;
            vi rp(num);
            rep(i,0,num) rp[i] = positions[ord[i]];
            rep(i,0,num) positions[i] = rp[i];
        }

        ll fen[B+1];

        // range update
        void update(int i, ll w){
            int id = num - invord[i%B];
            for(id; id<=num; id+=id&(-id)) fen[id] += w;
        }

        ll get(int p){
            ll times = positions + num - lower_bound(positions,positions+num,p); // number >= p
            ll ans = times * sum; // big updates summed
            int r = times;
            for(;r>0;r-=r&(-r)) ans += fen[r]; // point query
            return ans;
        }
    };

    wholeblock whole[(N+B-1)/B];
    ll smallsteps[N];

    int a[N];

    void update(int p, ll w){ // assume p is the number of blocks
        // do large blocks
        int L = 0;
        int id = 0;
        for (; L+B <= p; ++id, L += B){
            whole[id].sum += w;
        }    
        // do last block
        for(int i = 0;L+i<p;++i){
            whole[id].update(i,w);
            smallsteps[L+i] += w;
        }
    }

    ll query(int p, int d){
        ll ans = 0;

        // do big steps with blocks
        int L = 0;
        int id = 0;
        for(;L+B <= p; L+=B, ++id){
            ans += whole[id].get(d);
        }

        // do small steps
        for(int i = 0; L+i < p; ++i){
            ans += (d<=a[L+i] ? smallsteps[L+i] + whole[id].sum : 0);
        }

        return ans;
    }

    void solve(int n, int m, int z){

        rep(i,0,n){
            int x; cin >> x;
            a[i] = x;
            whole[i/B].insert(x);
        }
        rep(i,0,(N+B-1)/B){
            whole[i].build();
        }

        rep(i,0,m+z){
            int t; cin >> t;
            if (t==1){
                int p,w; cin >> p >> w;
                update(p,w);
            }else{
                int p,d; cin >> p >> d;
                cout << query(p,d) << '\n';
            }
        }
    }
}

namespace bigB{
    const int N = 1e6+500;
    const int B = 4600; // nsqrt(n)

    struct wholeblock{
        int positions[B];
        int ord[B], invord[B];
        int num = 0;

        ll sum = 0; // when we update whole block
        void insert(int x){
            positions[num] = x;
            ord[num] = num;
            ++num;
        }
        void build(){
            rep(i,0,num+1) fen[i] = 0;
            sort(ord,ord+num,[&](int i, int j){
                return positions[i] < positions[j];
            });
            rep(i,0,num) invord[ord[i]] = i;
            vi rp(num);
            rep(i,0,num) rp[i] = positions[ord[i]];
            rep(i,0,num) positions[i] = rp[i];
        }

        ll fen[B+1];

        // range update
        void update(int i, ll w){
            int id = num - invord[i%B];
            for(id; id<=num; id+=id&(-id)) fen[id] += w;
        }

        ll get(int p){
            ll times = positions + num - lower_bound(positions,positions+num,p); // number >= p
            ll ans = times * sum; // big updates summed
            int r = times;
            for(;r>0;r-=r&(-r)) ans += fen[r]; // point query
            return ans;
        }
    };

    wholeblock whole[(N+B-1)/B];
    ll smallsteps[N];

    int a[N];

    void update(int p, ll w){ // assume p is the number of blocks
        // do large blocks
        int L = 0;
        int id = 0;
        for (; L+B <= p; ++id, L += B){
            whole[id].sum += w;
        }    
        // do last block
        for(int i = 0;L+i<p;++i){
            whole[id].update(i,w);
            smallsteps[L+i] += w;
        }
    }

    ll query(int p, int d){
        ll ans = 0;

        // do big steps with blocks
        int L = 0;
        int id = 0;
        for(;L+B <= p; L+=B, ++id){
            ans += whole[id].get(d);
        }

        // do small steps
        for(int i = 0; L+i < p; ++i){
            ans += (d<=a[L+i] ? smallsteps[L+i] + whole[id].sum : 0);
        }

        return ans;
    }

    void solve(int n, int m, int z){
        rep(i,0,n){
            int x; cin >> x;
            a[i] = x;
            whole[i/B].insert(x);
        }
        rep(i,0,(N+B-1)/B){
            whole[i].build();
        }

        rep(i,0,m+z){
            int t; cin >> t;
            if (t==1){
                int p,w; cin >> p >> w;
                update(p,w);
            }else{
                int p,d; cin >> p >> d;
                cout << query(p,d) << '\n';
            }
        }
    }
}

namespace smallN{
    const int N = 220500;
    const int B = 900; // nsqrt(n)

    struct wholeblock{
        int positions[B];
        int ord[B], invord[B];
        int num = 0;

        ll sum = 0; // when we update whole block
        void insert(int x){
            positions[num] = x;
            ord[num] = num;
            ++num;
        }
        void build(){
            rep(i,0,num+1) fen[i] = 0;
            sort(ord,ord+num,[&](int i, int j){
                return positions[i] < positions[j];
            });
            rep(i,0,num) invord[ord[i]] = i;
            vi rp(num);
            rep(i,0,num) rp[i] = positions[ord[i]];
            rep(i,0,num) positions[i] = rp[i];
        }

        ll fen[B+1];

        // range update
        void update(int i, ll w){
            int id = num - invord[i%B];
            for(id; id<=num; id+=id&(-id)) fen[id] += w;
        }

        
        ll get(int p){
            ll times = positions + num - lower_bound(positions,positions+num,p); // number >= p
            ll ans = times * sum; // big updates summed
            int r = times;
            for(;r>0;r-=r&(-r)) ans += fen[r]; // point query
            return ans;
        }
    };

    wholeblock whole[(N+B-1)/B];
    ll smallsteps[N];

    int a[N];

    void update(int p, ll w){ // assume p is the number of blocks
        // do large blocks
        int L = 0;
        int id = 0;
        for (; L+B <= p; ++id, L += B){
            whole[id].sum += w;
        }    
        // do last block
        for(int i = 0;L+i<p;++i){
            whole[id].update(i,w);
            smallsteps[L+i] += w;
        }
    }

    ll query(int p, int d){
        ll ans = 0;

        // do big steps with blocks
        int L = 0;
        int id = 0;
        for(;L+B <= p; L+=B, ++id){
            ans += whole[id].get(d);
        }

        // do small steps
        for(int i = 0; L+i < p; ++i){
            ans += (d<=a[L+i] ? smallsteps[L+i] + whole[id].sum : 0);
        }

        return ans;
    }

    void solve(int n, int m, int z){
        
        rep(i,0,n){
            int x; cin >> x;
            a[i] = x;
            whole[i/B].insert(x);
        }
        rep(i,0,(N+B-1)/B){
            whole[i].build();
        }

        rep(i,0,m+z){
            int t; cin >> t;
            if (t==1){
                int p,w; cin >> p >> w;
                update(p,w);
            }else{
                int p,d; cin >> p >> d;
                cout << query(p,d) << '\n';
            }
        }
    }
}

int cutoff = 220000;

/*

query wants low number of blocks -> B large
update wants small blocks -> B small
if N small then block small anyways.
one out of 3 is always smaller than cutoff

*/

int main(){

    cin.tie(NULL),cin.sync_with_stdio(false);
    int n,m,z; cin >> n >> m >> z;

    if (n<cutoff) smallN::solve(n,m,z);
    else if (z*2 > m) bigB::solve(n,m,z);
    else smallB::solve(n,m,z);
}