#include <bits/stdc++.h>
#define dbg(x) #x << " = " << x << " "
using namespace std;
constexpr int MAX = 1'000'000'000, THRESHOLD = 31635, MAXN = 105, MAXM = 205; // ~~sqrt(MAX)
vector<pair<int, int>> light[MAXN], light_rev[MAXN];
vector<int> ones[MAXN], ones_rev[MAXN];
vector<tuple<int, int, int>> heavy;
int p[MAXN];
bool dp_1[THRESHOLD + 1][MAXN];
int dp_n[THRESHOLD + 1][MAXN];
int mx[MAXN][(THRESHOLD + 1) * 4];
int n, m;
void plant_trees(int pos, int l, int r) {
if (l == r) {
for (int i = 1; i <= n; i++) {
mx[i][pos] = dp_n[l][i];
}
return;
}
int m = (l + r) / 2;
plant_trees(pos * 2, l, m);
plant_trees(pos * 2 + 1, m + 1, r);
for (int i = 1; i <= n; i++) {
mx[i][pos] = max(mx[i][pos * 2], mx[i][pos * 2 + 1]);
}
}
// Znajduje najwyższy indeks w drzewie, taki, że jego wartość jest >= x.
int query_tree(int tree, int x) {
if (mx[tree][1] < x) return 0;
int pos = 1, l = 1, r = THRESHOLD;
while (l < r) {
int m = (l + r) / 2;
if (mx[tree][pos * 2 + 1] >= x) {
l = m + 1;
pos = pos * 2 + 1;
} else {
r = m;
pos = pos * 2;
}
}
return l;
}
int R(int a, int b) {
static mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
return uniform_int_distribution<int>(a, b)(rng);
}
bool mozliwe[THRESHOLD + 1];
vector<int> primes;
int solve() {
cin >> n >> m;
heavy.clear();
for (int i = 1; i <= n; i++) {
cin >> p[i];
ones[i].clear();
ones_rev[i].clear();
light[i].clear();
light_rev[i].clear();
for (int j = 0; j <= THRESHOLD; j++) {
dp_1[j][i] = 0;
dp_n[j][i] = 0;
}
}
set<int> rozne_wagi;
mozliwe[1] = 1;
for (int i = 2; i <= THRESHOLD; i++) mozliwe[i] = false;
for (int i = 1; i <= m; i++) {
int a, b, w;
cin >> a >> b >> w;
if (w <= THRESHOLD) {
if (w > 1) {
light[a].push_back({b, w});
light_rev[b].push_back({a, w});
} else {
ones[a].push_back(b);
ones_rev[b].push_back(a);
}
heavy.push_back({a, b, w});
rozne_wagi.insert(w);
} else {
heavy.push_back({a, b, w});
}
}
for (int i = 1; i <= THRESHOLD; i++) {
if (mozliwe[i]) {
for (auto w : rozne_wagi) {
if (i * w <= THRESHOLD) mozliwe[i * w] = 1;
}
}
}
// Wylicz dp_1 w O(sqrt(MAX) * n * (n+m)).
dp_1[1][1] = 1;
for (int p_src = 1; p_src < THRESHOLD; p_src++) {
if (mozliwe[p_src]) {
for (int rep = 1; rep <= n; rep++) { // Trzeba przepchać jedynki...
for (int src = 1; src <= n; src++) {
if (dp_1[p_src][src]) {
for (auto dst : ones[src]) {
if (p_src <= p[dst]) {
dp_1[p_src][dst] = 1;
}
}
}
}
}
for (int src = 1; src <= n; src++) {
if (dp_1[p_src][src]) {
for (auto [dst, w] : light[src]) {
int p_dst = p_src * w;
if (p_dst <= THRESHOLD && p_dst <= p[dst]) {
dp_1[p_dst][dst] = 1;
}
}
}
}
}
}
// Wylicz dp_n w O(sqrt(MAX) * n * (n+m)).
dp_n[1][n] = p[n];
for (int p_dst = 1; p_dst <= min(THRESHOLD, p[n]); p_dst++) {
if (mozliwe[p_dst]) {
for (int rep = 1; rep <= n; rep++) { // Trzeba przepchać jedynki...
for (int dst = 1; dst <= n; dst++) {
for (auto src : ones_rev[dst]) {
dp_n[p_dst][src] = max(dp_n[p_dst][src], min(dp_n[p_dst][dst], p[src]));
}
}
}
}
for (int dst = 1; dst <= n; dst++) {
for (auto [src, w] : light_rev[dst]) {
int p_src = p_dst * w;
if (p_src <= THRESHOLD) {
dp_n[p_src][src] = max(dp_n[p_src][src], min(dp_n[p_dst][dst] / w, p[src]));
}
}
}
}
plant_trees(1, 1, THRESHOLD);
int wynik = (n == 1 ? 1 : 0);
for (int p_src = 1; p_src <= THRESHOLD; p_src++) {
if (mozliwe[p_src]) {
// Jedna krawędź o wadze > sqrt(MAX).
for (auto [u, v, w] : heavy) {
// Po pierwsze musi być możliwe przejście do u z takim iloczynem.
if (!dp_1[p_src][u]) continue;
// Po drugie musi być możliwe przejście potem tą krawędzią.
if (1LL * p_src * w > p[v]) continue;
// Tu już się nie przekręci, bo p[v] <= 10^9.
int p_v = p_src * w;
int max_p_dst = query_tree(v, p_v);
wynik = max(wynik, p_v * max_p_dst);
}
}
}
return (wynik == 0 ? -1 : wynik);
}
int32_t main() {
ios_base::sync_with_stdio(0);
int tests = 1;
cin >> tests;
while (tests--) {
cout << solve() << "\n";
}
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | #include <bits/stdc++.h> #define dbg(x) #x << " = " << x << " " using namespace std; constexpr int MAX = 1'000'000'000, THRESHOLD = 31635, MAXN = 105, MAXM = 205; // ~~sqrt(MAX) vector<pair<int, int>> light[MAXN], light_rev[MAXN]; vector<int> ones[MAXN], ones_rev[MAXN]; vector<tuple<int, int, int>> heavy; int p[MAXN]; bool dp_1[THRESHOLD + 1][MAXN]; int dp_n[THRESHOLD + 1][MAXN]; int mx[MAXN][(THRESHOLD + 1) * 4]; int n, m; void plant_trees(int pos, int l, int r) { if (l == r) { for (int i = 1; i <= n; i++) { mx[i][pos] = dp_n[l][i]; } return; } int m = (l + r) / 2; plant_trees(pos * 2, l, m); plant_trees(pos * 2 + 1, m + 1, r); for (int i = 1; i <= n; i++) { mx[i][pos] = max(mx[i][pos * 2], mx[i][pos * 2 + 1]); } } // Znajduje najwyższy indeks w drzewie, taki, że jego wartość jest >= x. int query_tree(int tree, int x) { if (mx[tree][1] < x) return 0; int pos = 1, l = 1, r = THRESHOLD; while (l < r) { int m = (l + r) / 2; if (mx[tree][pos * 2 + 1] >= x) { l = m + 1; pos = pos * 2 + 1; } else { r = m; pos = pos * 2; } } return l; } int R(int a, int b) { static mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); return uniform_int_distribution<int>(a, b)(rng); } bool mozliwe[THRESHOLD + 1]; vector<int> primes; int solve() { cin >> n >> m; heavy.clear(); for (int i = 1; i <= n; i++) { cin >> p[i]; ones[i].clear(); ones_rev[i].clear(); light[i].clear(); light_rev[i].clear(); for (int j = 0; j <= THRESHOLD; j++) { dp_1[j][i] = 0; dp_n[j][i] = 0; } } set<int> rozne_wagi; mozliwe[1] = 1; for (int i = 2; i <= THRESHOLD; i++) mozliwe[i] = false; for (int i = 1; i <= m; i++) { int a, b, w; cin >> a >> b >> w; if (w <= THRESHOLD) { if (w > 1) { light[a].push_back({b, w}); light_rev[b].push_back({a, w}); } else { ones[a].push_back(b); ones_rev[b].push_back(a); } heavy.push_back({a, b, w}); rozne_wagi.insert(w); } else { heavy.push_back({a, b, w}); } } for (int i = 1; i <= THRESHOLD; i++) { if (mozliwe[i]) { for (auto w : rozne_wagi) { if (i * w <= THRESHOLD) mozliwe[i * w] = 1; } } } // Wylicz dp_1 w O(sqrt(MAX) * n * (n+m)). dp_1[1][1] = 1; for (int p_src = 1; p_src < THRESHOLD; p_src++) { if (mozliwe[p_src]) { for (int rep = 1; rep <= n; rep++) { // Trzeba przepchać jedynki... for (int src = 1; src <= n; src++) { if (dp_1[p_src][src]) { for (auto dst : ones[src]) { if (p_src <= p[dst]) { dp_1[p_src][dst] = 1; } } } } } for (int src = 1; src <= n; src++) { if (dp_1[p_src][src]) { for (auto [dst, w] : light[src]) { int p_dst = p_src * w; if (p_dst <= THRESHOLD && p_dst <= p[dst]) { dp_1[p_dst][dst] = 1; } } } } } } // Wylicz dp_n w O(sqrt(MAX) * n * (n+m)). dp_n[1][n] = p[n]; for (int p_dst = 1; p_dst <= min(THRESHOLD, p[n]); p_dst++) { if (mozliwe[p_dst]) { for (int rep = 1; rep <= n; rep++) { // Trzeba przepchać jedynki... for (int dst = 1; dst <= n; dst++) { for (auto src : ones_rev[dst]) { dp_n[p_dst][src] = max(dp_n[p_dst][src], min(dp_n[p_dst][dst], p[src])); } } } } for (int dst = 1; dst <= n; dst++) { for (auto [src, w] : light_rev[dst]) { int p_src = p_dst * w; if (p_src <= THRESHOLD) { dp_n[p_src][src] = max(dp_n[p_src][src], min(dp_n[p_dst][dst] / w, p[src])); } } } } plant_trees(1, 1, THRESHOLD); int wynik = (n == 1 ? 1 : 0); for (int p_src = 1; p_src <= THRESHOLD; p_src++) { if (mozliwe[p_src]) { // Jedna krawędź o wadze > sqrt(MAX). for (auto [u, v, w] : heavy) { // Po pierwsze musi być możliwe przejście do u z takim iloczynem. if (!dp_1[p_src][u]) continue; // Po drugie musi być możliwe przejście potem tą krawędzią. if (1LL * p_src * w > p[v]) continue; // Tu już się nie przekręci, bo p[v] <= 10^9. int p_v = p_src * w; int max_p_dst = query_tree(v, p_v); wynik = max(wynik, p_v * max_p_dst); } } } return (wynik == 0 ? -1 : wynik); } int32_t main() { ios_base::sync_with_stdio(0); int tests = 1; cin >> tests; while (tests--) { cout << solve() << "\n"; } } |
English