1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <iostream>


//ZASTĄP KRAWĘDZIE O WADZE 1 PRZEZ 
//TABLICE MINIMALNEGO OGRANICZENIA POTRZEBNEGO DO PRZEJŚCIA OD WIERZCHOŁKA a DO b STOSUJĄC TYLKO JEDYNKI. 

//TABLICE STOSUJ DO BEZPOŚREDNIEGO PRZEJŚCIA POMIĘDZY WIERZCHOŁKI. 




//ZLICZAJ ŚCIEŻKI OD START  (GDZIE KONIEC I JAKA MOC).
//KONIEC MUSI MIEĆ MOC CONAJWYŻEJ (p_n)^(2/3).

//UWAGA : USUWAJ DUPLIKATY

//ZLICZAJ ŚCIEŻKI DO END, (GDZIE POCZĄTEK, JAKI MNOŻNIK I JAKIE OGRANICZENIE).
//MNOŻNIK MUSI BYĆ CONAJMNIEJ (p_n)^(1/3).

//UWAGA : PRZY USUWANIU DUPLIKATÓW ZOSTAW TO Z WIĘKSZYM OGRANICZENIEM.

//PODCZAS ZLICZANIA SORTUJ KRAWĘDZIE WEDLUG WAG, ABY SPRAWDZAĆ TYLKO DOBRE KRAWĘDZIE


//NA KONIEC DLA KAŻDEGO WIERZCHOŁKA I KAŻDEJ ŚCIEŻKI OD NIEGO DO END 
//ZNAJDŹ NAJWIĘKSZY MNOŻNIK MNIEJSZY OD OGRANICZENIA SPOŚRÓD ŚCIEŻEK OD START DO WIERZCHOŁKA

#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>

const int MAX_N = 100;
std::vector<std::pair<int, long long>> graph[MAX_N];
std::vector<std::pair<int, long long>> rev_graph[MAX_N];

long long przep[MAX_N];
long long transitions[MAX_N][MAX_N];
bool visited[MAX_N];
std::vector<std::pair<int, long long>> trans_vec[MAX_N];
std::vector<std::pair<int, long long>> rev_trans_vec[MAX_N];
struct Start_frag {
	int end;
	long long moc;
	bool used_edge1;
};

struct End_frag{
	int start;
	long long mult;
	long long limit;
	bool used_edge1;
};
std::set<long long> begin_paths[MAX_N];
std::vector<std::pair<long long, long long>> end_paths[MAX_N];

int n, m;

void calculate_transition(int a) {
	for (int i = 0; i < n; i++) visited[i] = false;
	visited[a] = true;
	std::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int>>, std::less<>> to_process;
	for (auto edge : graph[a]) {
		if (edge.second == 1LL) {
			to_process.push({ 1000000000LL, edge.first });

		}
	}
	while (to_process.size() != 0) {
		auto cur_v = to_process.top();
		to_process.pop();
		if (visited[cur_v.second]) continue;
		visited[cur_v.second] = true;
		long long cur_przep = std::min(cur_v.first, przep[cur_v.second]);
		transitions[a][cur_v.second] = cur_przep;
		std::cout << "";
		for (auto edge : graph[cur_v.second]) {
			if (edge.second == 1LL) {
				to_process.push({ cur_przep,  edge.first });
			}
		}
	}
	
}

int main()
{
	int num_tests = 0;
	std::cin >> num_tests;
	for (int testy = 0; testy < num_tests; testy++)
	{
		std::cin >> n >> m;
		for (int i = 0; i < n; i++) {
			graph[i] = std::vector<std::pair<int, long long>>();
			rev_graph[i] = std::vector<std::pair<int, long long>>();
			for (int j = 0; j < n; j++) {
				transitions[i][j] = -1;
			}
			//transitions[i] = std::vector<std::pair<int, long long>>();
		}
		for (int i = 0; i < n; i++) {
			long long p;
			std::cin >> p;
			przep[i] = p;
		}

		for (int i = 0; i < m; i++) {
			int a, b, w;
			std::cin >> a >> b >> w;
			a--; b--;
			graph[a].push_back({ b,w });
			rev_graph[b].push_back({ a,w });
		}
		for (int i = 0; i < n; i++) {
			std::sort(begin(graph[i]), end(graph[i]), [](auto &a, auto &b) {return a.second < b.second; });
			// SORT EDGES INCREASINGLY
		}

		for (int i = 0; i < n; i++) rev_trans_vec[i] = std::vector<std::pair<int, long long>>();
		for (int a = 0; a < n; a++) {
			calculate_transition(a);
			trans_vec[a] = std::vector<std::pair<int, long long>>();
			for (int b = 0; b < n; b++) {
				if (transitions[a][b] != -1LL) {
					trans_vec[a].push_back({ b, transitions[a][b] });
					rev_trans_vec[b].push_back({ a, transitions[a][b] });
					std::cout << "";
				}
			}
			std::sort(begin(trans_vec[a]), end(trans_vec[a]), [](auto &x, auto &y) {
				return x.second < y.second;
			});
		}

		for (int i = 0; i < n; i++) { //REMOVE EDGES WITH WEIGHT 1
			graph[i].erase(std::remove_if(graph[i].begin(), graph[i].end(), 
							[](std::pair<int, long long> &elem) {return elem.second == 1; }),
				           graph[i].end());
			rev_graph[i].erase(std::remove_if(rev_graph[i].begin(), rev_graph[i].end(),
				[](std::pair<int, long long> &elem) {return elem.second == 1; }),
				rev_graph[i].end());
		}

		std::stack<Start_frag> to_process;
		to_process.push({ 0,1, false });
		long long last_p = przep[n-1];
		for (int i = 0; i < n; i++) {
			begin_paths[i] = std::set<long long>();
			end_paths[i] = std::vector<std::pair<long long, long long>>();
		}

		while (!to_process.empty()) {
			auto x = to_process.top();
			to_process.pop();
			//std::cout << "start " << x.end << " moc " << x.moc << "\n";
			for (auto edge : graph[x.end]) {
				if (x.moc <= std::min(1000000LL, przep[edge.first]) / edge.second) {
					if (begin_paths[edge.first].find(x.moc * edge.second) == end(begin_paths[edge.first])) {

						begin_paths[edge.first].insert(x.moc * edge.second);
						to_process.push({ edge.first, x.moc * edge.second, false });
					}
				}
			}
			if (!x.used_edge1) {
				for (auto edge1 : trans_vec[x.end]) {
					if (x.moc <= edge1.second) {
						if (begin_paths[edge1.first].find(x.moc) == end(begin_paths[edge1.first])) {
							to_process.push({ edge1.first, x.moc, true });
							begin_paths[edge1.first].insert(x.moc);
						}
					}
				}
			}
		}

		long long best_moc = -1;

		std::stack<End_frag> to_process2 = std::stack<End_frag>();
		to_process2.push(End_frag{ n - 1, 1LL, przep[n - 1], false });
		while (!to_process2.empty()) {
			auto x = to_process2.top();
			to_process2.pop();
			//std::cout << "end " << x.start << " mult " << x.mult << " limit " << x.limit << "\n";
			if (x.mult <= 1000) { //PROCESS CONNECTED NODES
				for (auto rev_edge : rev_graph[x.start]) {
					long long new_limit = x.limit / rev_edge.second;
					//std::cout << "  at " << rev_edge.first << "  mult " << rev_edge.second << " new limit " << new_limit << "\n";
					if (0 < new_limit) {
						long long new_mult = x.mult * rev_edge.second;
						if (rev_edge.first == 0) { best_moc = std::max(best_moc, new_mult); }
						new_limit = std::min(przep[rev_edge.first], new_limit);
						to_process2.push({ rev_edge.first, new_mult, new_limit, false });
					}
				}

				if (!x.used_edge1) {
					for (auto edge1 : rev_trans_vec[x.start]) {
						long long new_limit = std::min(x.limit, edge1.second);
						to_process2.push({ edge1.first, x.mult, new_limit, true });
					}
				}
			}
			else {
				end_paths[x.start].push_back({ x.mult, x.limit });
			}

		}

		for (int i = 0; i < n; i++) {
			std::vector<long long> long_paths = std::vector<long long>();
			std::copy(begin_paths[i].begin(), begin_paths[i].end(), std::back_inserter(long_paths));

			std::sort(begin(long_paths), end(long_paths), std::less<>());
			std::sort(begin(end_paths[i]), end(end_paths[i]), std::less<>());
			for (auto x : end_paths[i]) {
				auto res = std::upper_bound(begin(long_paths), end(long_paths), x.second);
				if (res != begin(long_paths)) {
					std::advance(res, -1);
					best_moc = std::max(best_moc, (*res)*x.first);
				}
			}
		}
		/*
		for (int i = 0; i < n; i++) {
			std::cout << "START [" << i << "]  (";
			for (auto x : begin_paths[i]) {
				std::cout << " " << x << " ";
			}
			std::cout << ")\n";
		}

		for (int i = 0; i < n; i++) {
			std::cout << "END [" << i << "]  (";
			for (auto x : end_paths[i]) {
				std::cout << " {" << x.first << ", " << x.second << "} ";
			}
			std::cout << ")\n";
		}*/

		std::cout << best_moc << "\n";
	}

}