1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include <bits/stdc++.h>
using namespace std;

template <typename T> T mod_inv_in_range(T a, T m) {
	// assert(0 <= a && a < m);
	T x = a, y = m;
	// coeff of a in x and y
	T vx = 1, vy = 0;
	while (x) {
		T k = y / x;
		y %= x;
		vy -= k * vx;
		std::swap(x, y);
		std::swap(vx, vy);
	}
	assert(y == 1);
	return vy < 0 ? m + vy : vy;
}

template <typename T> struct extended_gcd_result {
	T gcd;
	T coeff_a, coeff_b;
};
template <typename T> extended_gcd_result<T> extended_gcd(T a, T b) {
	T x = a, y = b;
	// coeff of a and b in x and y
	T ax = 1, ay = 0;
	T bx = 0, by = 1;
	while (x) {
		T k = y / x;
		y %= x;
		ay -= k * ax;
		by -= k * bx;
		std::swap(x, y);
		std::swap(ax, ay);
		std::swap(bx, by);
	}
	return {y, ay, by};
}

template <typename T> T mod_inv(T a, T m) {
	a %= m;
	a = a < 0 ? a + m : a;
	return mod_inv_in_range(a, m);
}

template <int MOD_> struct modnum {
	static constexpr int MOD = MOD_;
	static_assert(MOD_ > 0, "MOD must be positive");

private:
	int v;

public:

	modnum() : v(0) {}
	modnum(int64_t v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
	explicit operator int() const { return v; }
	friend std::ostream& operator << (std::ostream& out, const modnum& n) { return out << int(n); }
	friend std::istream& operator >> (std::istream& in, modnum& n) { int64_t v_; in >> v_; n = modnum(v_); return in; }

	friend bool operator == (const modnum& a, const modnum& b) { return a.v == b.v; }
	friend bool operator != (const modnum& a, const modnum& b) { return a.v != b.v; }

	modnum inv() const {
		modnum res;
		res.v = mod_inv_in_range(v, MOD);
		return res;
	}
	friend modnum inv(const modnum& m) { return m.inv(); }
	modnum neg() const {
		modnum res;
		res.v = v ? MOD-v : 0;
		return res;
	}
	friend modnum neg(const modnum& m) { return m.neg(); }

	modnum operator- () const {
		return neg();
	}
	modnum operator+ () const {
		return modnum(*this);
	}

	modnum& operator ++ () {
		v ++;
		if (v == MOD) v = 0;
		return *this;
	}
	modnum& operator -- () {
		if (v == 0) v = MOD;
		v --;
		return *this;
	}
	modnum& operator += (const modnum& o) {
		v -= MOD-o.v;
		v = (v < 0) ? v + MOD : v;
		return *this;
	}
	modnum& operator -= (const modnum& o) {
		v -= o.v;
		v = (v < 0) ? v + MOD : v;
		return *this;
	}
	modnum& operator *= (const modnum& o) {
		v = int(int64_t(v) * int64_t(o.v) % MOD);
		return *this;
	}
	modnum& operator /= (const modnum& o) {
		return *this *= o.inv();
	}

	friend modnum operator ++ (modnum& a, int) { modnum r = a; ++a; return r; }
	friend modnum operator -- (modnum& a, int) { modnum r = a; --a; return r; }
	friend modnum operator + (const modnum& a, const modnum& b) { return modnum(a) += b; }
	friend modnum operator - (const modnum& a, const modnum& b) { return modnum(a) -= b; }
	friend modnum operator * (const modnum& a, const modnum& b) { return modnum(a) *= b; }
	friend modnum operator / (const modnum& a, const modnum& b) { return modnum(a) /= b; }
};

template <typename T> T pow(T a, long long b) {
	assert(b >= 0);
	T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}

template <typename tag> struct dynamic_modnum {
private:
#if __cpp_inline_variables >= 201606
	// C++17 and up
	inline static int MOD_ = 0;
	inline static uint64_t BARRETT_M = 0;
#else
	// NB: these must be initialized out of the class by hand:
	//   static int dynamic_modnum<tag>::MOD = 0;
	//   static int dynamic_modnum<tag>::BARRETT_M = 0;
	static int MOD_;
	static uint64_t BARRETT_M;
#endif

public:
	// Make only the const-reference public, to force the use of set_mod
	static constexpr int const& MOD = MOD_;

	// Barret reduction taken from KACTL:
	/**
	 * Author: Simon Lindholm
	 * Date: 2020-05-30
	 * License: CC0
	 * Source: https://en.wikipedia.org/wiki/Barrett_reduction
	 * Description: Compute $a \% b$ about 5 times faster than usual, where $b$ is constant but not known at compile time.
	 * Returns a value congruent to $a \pmod b$ in the range $[0, 2b)$.
	 * Status: proven correct, stress-tested
	 * Measured as having 4 times lower latency, and 8 times higher throughput, see stress-test.
	 * Details:
	 * More precisely, it can be proven that the result equals 0 only if $a = 0$,
	 * and otherwise lies in $[1, (1 + a/2^64) * b)$.
	 */
	static void set_mod(int mod) {
		assert(mod > 0);
		MOD_ = mod;
		BARRETT_M = (uint64_t(-1) / MOD);
	}
	static uint32_t barrett_reduce_partial(uint64_t a) {
		return uint32_t(a - uint64_t((__uint128_t(BARRETT_M) * a) >> 64) * MOD);
	}
	static int barrett_reduce(uint64_t a) {
		int32_t res = int32_t(barrett_reduce_partial(a) - MOD);
		return (res < 0) ? res + MOD : res;
	}

	struct mod_reader {
		friend std::istream& operator >> (std::istream& i, mod_reader) {
			int mod; i >> mod;
			dynamic_modnum::set_mod(mod);
			return i;
		}
	};
	static mod_reader MOD_READER() {
		return mod_reader();
	}

private:
	int v;

public:

	dynamic_modnum() : v(0) {}
	dynamic_modnum(int64_t v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
	explicit operator int() const { return v; }
	friend std::ostream& operator << (std::ostream& out, const dynamic_modnum& n) { return out << int(n); }
	friend std::istream& operator >> (std::istream& in, dynamic_modnum& n) { int64_t v_; in >> v_; n = dynamic_modnum(v_); return in; }

	friend bool operator == (const dynamic_modnum& a, const dynamic_modnum& b) { return a.v == b.v; }
	friend bool operator != (const dynamic_modnum& a, const dynamic_modnum& b) { return a.v != b.v; }

	dynamic_modnum inv() const {
		dynamic_modnum res;
		res.v = mod_inv_in_range(v, MOD);
		return res;
	}
	friend dynamic_modnum inv(const dynamic_modnum& m) { return m.inv(); }
	dynamic_modnum neg() const {
		dynamic_modnum res;
		res.v = v ? MOD-v : 0;
		return res;
	}
	friend dynamic_modnum neg(const dynamic_modnum& m) { return m.neg(); }

	dynamic_modnum operator- () const {
		return neg();
	}
	dynamic_modnum operator+ () const {
		return dynamic_modnum(*this);
	}

	dynamic_modnum& operator ++ () {
		v ++;
		if (v == MOD) v = 0;
		return *this;
	}
	dynamic_modnum& operator -- () {
		if (v == 0) v = MOD;
		v --;
		return *this;
	}
	dynamic_modnum& operator += (const dynamic_modnum& o) {
		v -= MOD-o.v;
		v = (v < 0) ? v + MOD : v;
		return *this;
	}
	dynamic_modnum& operator -= (const dynamic_modnum& o) {
		v -= o.v;
		v = (v < 0) ? v + MOD : v;
		return *this;
	}
	dynamic_modnum& operator *= (const dynamic_modnum& o) {
		v = barrett_reduce(int64_t(v) * int64_t(o.v));
		return *this;
	}
	dynamic_modnum& operator /= (const dynamic_modnum& o) {
		return *this *= o.inv();
	}

	friend dynamic_modnum operator ++ (dynamic_modnum& a, int) { dynamic_modnum r = a; ++a; return r; }
	friend dynamic_modnum operator -- (dynamic_modnum& a, int) { dynamic_modnum r = a; --a; return r; }
	friend dynamic_modnum operator + (const dynamic_modnum& a, const dynamic_modnum& b) { return dynamic_modnum(a) += b; }
	friend dynamic_modnum operator - (const dynamic_modnum& a, const dynamic_modnum& b) { return dynamic_modnum(a) -= b; }
	friend dynamic_modnum operator * (const dynamic_modnum& a, const dynamic_modnum& b) { return dynamic_modnum(a) *= b; }
	friend dynamic_modnum operator / (const dynamic_modnum& a, const dynamic_modnum& b) { return dynamic_modnum(a) /= b; }
};

int main(){
	ios_base::sync_with_stdio(false), cin.tie(nullptr);
	int A, B, C, P;
	cin >> A >> B >> C >> P;
	struct tag;
	using num = dynamic_modnum<tag>;
	num::set_mod(P);
	int M = A * B;
	vector<num> fact(M+1), ifact(M+1);
	fact[0] = 1;
	for(int i = 1; i <= M; i++){
		fact[i] = fact[i-1] * i;
	}
	ifact[M] = 1 / fact[M];
	for(int i = M-1; i >= 0; i--){
		ifact[i] = ifact[i+1] * (i+1);
	}
	int cnt = 0;
	for(int x = 1; x <= A; x++){
		for(int y = 1; y <= B; y++){
			if(x + y - 1 <= C){
				cnt += 1;
			}
		}
	}
	cout << cnt << ' ';
	num ans = fact[cnt];
	for(int x = 1; x <= A; x++){
		ans *= ifact[x+B-1] * fact[x-1];
	}
	cout << (ans * ans);
	cout << '\n';
}