1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;

public class ilo {

    private static final Set<Integer> fibs = new HashSet<Integer>(Arrays.asList(2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
            233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,
            514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
            102334155, 165580141, 267914296, 433494437, 701408733));

    public static void main(String[] args) throws Exception {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
        solve(br, bw);
    }

    public static void solve(BufferedReader br, BufferedWriter bw) throws Exception {
        int t = Integer.parseInt(new StringTokenizer(br.readLine()).nextToken());
        for (int i = 0; i < t; i++) {
            int n = Integer.parseInt(new StringTokenizer(br.readLine()).nextToken());
            bw.write(isProductOfTwoFibonacciNumers(n) ? "TAK" : "NIE");
            bw.newLine();
        }
        bw.flush();
    }

    public static boolean isProductOfTwoFibonacciNumers(int n) {
        if (n == 0 || n == 1 || fibs.contains(n)) {
            return true;
        }
        for (int fib : fibs) {
            boolean divisible = n % fib == 0;
            if (divisible && fibs.contains(n / fib)) {
                return true;
            }
        }
        return false;
    }
}