1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <iostream>
#include <unordered_set>
#include <vector>
#include <iterator>
#include <cmath>
#include <string>

class FibonacciMultiplicationValidator
{
public:
	FibonacciMultiplicationValidator()
	{
		const long FibonacciNumbers[] = {
			0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
			17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
			5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296,
			433494437, 701408733, 1134903170 };

		_fiboVec = std::vector<long>(std::begin(FibonacciNumbers), std::end(FibonacciNumbers));
		_fiboHashSet = std::unordered_set<long>(std::begin(FibonacciNumbers), std::end(FibonacciNumbers));
	}

	bool IsMultiplication(const long& number)
	{
		if( IsFibonacciNumber(number) )
		{
			return true;
		}

		long numberLimit = sqrt(number) + 1;

		size_t fiboVecSize = _fiboVec.size();
		for(int i = 3; i<fiboVecSize; ++i)
		{
			long& elem = _fiboVec[i];

			if(elem > numberLimit)
				break;

			if(number % elem != 0)
				continue;

			long div = number / elem;
			if(IsFibonacciNumber(div))
			{
				return true;
			}
		}

		return false;
	}

private:
	bool IsFibonacciNumber(const long& number)
	{
		return _fiboHashSet.find(number) != _fiboHashSet.end();
	}

private:
	std::vector<long> _fiboVec;
	std::unordered_set<long> _fiboHashSet;
};

int main()
{
	FibonacciMultiplicationValidator validator;
	
	int t;
	std::cin >> t;

	long n;

	for(int i = 0; i < t; ++i)
	{
		std::cin >> n;
		std::string res = validator.IsMultiplication(n) ? "TAK" : "NIE";
		std::cout << res.c_str() << std::endl;
	}
}