#include <iostream> #include <set> using namespace std; #define DEBUG #define EVEN(X) (X % 2 == 0) #define ODD(X) (X % 2 != 0) #define FOR(E, I) for(typeof(I.begin()) E = I.begin(); E != I.end(); E++) const int fibonacci_1e9[] = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733}; set<int> fibonacciSequence; bool testForFibonacciProduct(int n) { FOR(i, fibonacciSequence) { if (n % *i == 0) { if (fibonacciSequence.find(n / *i) != fibonacciSequence.end()) { return true; } } } return false; } int main() { fibonacciSequence.insert(fibonacci_1e9 + 1, fibonacci_1e9 + (sizeof(fibonacci_1e9) / sizeof(fibonacci_1e9[0]))); int t, n; cin >> t; while (t--) { cin >> n; cout << (testForFibonacciProduct(n) ? "TAK" : "NIE") << endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | #include <iostream> #include <set> using namespace std; #define DEBUG #define EVEN(X) (X % 2 == 0) #define ODD(X) (X % 2 != 0) #define FOR(E, I) for(typeof(I.begin()) E = I.begin(); E != I.end(); E++) const int fibonacci_1e9[] = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733}; set<int> fibonacciSequence; bool testForFibonacciProduct(int n) { FOR(i, fibonacciSequence) { if (n % *i == 0) { if (fibonacciSequence.find(n / *i) != fibonacciSequence.end()) { return true; } } } return false; } int main() { fibonacciSequence.insert(fibonacci_1e9 + 1, fibonacci_1e9 + (sizeof(fibonacci_1e9) / sizeof(fibonacci_1e9[0]))); int t, n; cin >> t; while (t--) { cin >> n; cout << (testForFibonacciProduct(n) ? "TAK" : "NIE") << endl; } return 0; } |