/* W rozwiązaniu wykorzystałem implementację drzewa przedziałowego ze strony: http://was.zaa.mimuw.edu.pl/?q=node/9 */ #include <iostream> #include <cstdio> #include <algorithm> #include <vector> #include <list> #include <queue> #include <stack> #include <map> #include <set> #include <cmath> #include <string> #include <cstring> using namespace std; typedef long long int LL; typedef long double LD; typedef vector<int> VI; typedef vector<LL> VLL; typedef vector<LD> VLD; typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; const int INF = 1000000001; const LD EPS = 10e-9; #define FOR(x, b, e) for(int x = b; x <= (e); ++x) #define FORD(x, b, e) for(int x = b; x >= (e); --x) #define REP(x, n) for(int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i) #define MP make_pair #define PB push_back #define ST first #define ND second #define abs(a) ((a)<0 ? -(a) : (a)) #define max(a, b) ((a) > (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b)) const int MAX_N = 60005; const int MAX_M = 65536; int tree[2*MAX_M]; void insert(int x, int val) { int v = MAX_M + x; tree[v] = val; while (v != 1) { v /= 2; tree[v] = max(tree[2*v], tree[2*v+1]); } } int query(int a, int b) { if(a > b) return 0; int va = MAX_M + a, vb = MAX_M + b; int wyn = tree[va]; if (va != vb) wyn = max(wyn, tree[vb]); while (va / 2 != vb / 2) { if (va % 2 == 0) wyn = max(wyn, tree[va+1]); if (vb % 2 == 1) wyn = max(tree[vb-1], wyn); va /= 2; vb /= 2; } return wyn; } struct car { int w, x2, id; car(int _w = 0, int _x2 = 0, int _id = 0) : w(_w), x2(_x2), id(_id) {}; }carsIn[MAX_N], carsInSort[MAX_N], carsOut[MAX_N]; bool operator<(const car &a, const car &b) { if(a.x2 == b.x2) { return a.id < b.id; } return a.x2 < b.x2; } int t, n, x1_, x2_, y1_, y2_, w; int main() { scanf("%d", &t); { while(t--) { scanf("%d %d", &n, &w); REP(i, n) { scanf("%d %d %d %d", &x1_, &y1_, &x2_, &y2_); carsInSort[i] = carsIn[i] = car(abs(y2_-y1_), max(x1_, x2_), i); } sort(carsInSort, carsInSort+n); REP(i, n) { carsInSort[i].x2 = carsIn[carsInSort[i].id].x2 = i; insert(i, carsInSort[i].w); //cout << "insert w: " << carsInSort[i].w << endl; } REP(i, n) { scanf("%d %d %d %d", &x1_, &y1_, &x2_, &y2_); carsOut[i] = car(abs(y2_-y1_), max(x1_, x2_), i); } bool ok = 1; sort(carsOut, carsOut+n); REP(i, n) { car carOrig = carsIn[carsOut[i].id]; int q = query(0, carOrig.x2-1); //cout << "id: " << carOrig.id << ", q: " << q << ", right: " << carOrig.x2-1 << endl; if(q > w-carOrig.w) { ok = 0; break; } insert(carOrig.x2, 0); } printf((ok ? "TAK\n" : "NIE\n")); memset(tree, 0, (2*MAX_M-1)*sizeof(int)); } } //system("pause"); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | /* W rozwiązaniu wykorzystałem implementację drzewa przedziałowego ze strony: http://was.zaa.mimuw.edu.pl/?q=node/9 */ #include <iostream> #include <cstdio> #include <algorithm> #include <vector> #include <list> #include <queue> #include <stack> #include <map> #include <set> #include <cmath> #include <string> #include <cstring> using namespace std; typedef long long int LL; typedef long double LD; typedef vector<int> VI; typedef vector<LL> VLL; typedef vector<LD> VLD; typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; const int INF = 1000000001; const LD EPS = 10e-9; #define FOR(x, b, e) for(int x = b; x <= (e); ++x) #define FORD(x, b, e) for(int x = b; x >= (e); --x) #define REP(x, n) for(int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i) #define MP make_pair #define PB push_back #define ST first #define ND second #define abs(a) ((a)<0 ? -(a) : (a)) #define max(a, b) ((a) > (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b)) const int MAX_N = 60005; const int MAX_M = 65536; int tree[2*MAX_M]; void insert(int x, int val) { int v = MAX_M + x; tree[v] = val; while (v != 1) { v /= 2; tree[v] = max(tree[2*v], tree[2*v+1]); } } int query(int a, int b) { if(a > b) return 0; int va = MAX_M + a, vb = MAX_M + b; int wyn = tree[va]; if (va != vb) wyn = max(wyn, tree[vb]); while (va / 2 != vb / 2) { if (va % 2 == 0) wyn = max(wyn, tree[va+1]); if (vb % 2 == 1) wyn = max(tree[vb-1], wyn); va /= 2; vb /= 2; } return wyn; } struct car { int w, x2, id; car(int _w = 0, int _x2 = 0, int _id = 0) : w(_w), x2(_x2), id(_id) {}; }carsIn[MAX_N], carsInSort[MAX_N], carsOut[MAX_N]; bool operator<(const car &a, const car &b) { if(a.x2 == b.x2) { return a.id < b.id; } return a.x2 < b.x2; } int t, n, x1_, x2_, y1_, y2_, w; int main() { scanf("%d", &t); { while(t--) { scanf("%d %d", &n, &w); REP(i, n) { scanf("%d %d %d %d", &x1_, &y1_, &x2_, &y2_); carsInSort[i] = carsIn[i] = car(abs(y2_-y1_), max(x1_, x2_), i); } sort(carsInSort, carsInSort+n); REP(i, n) { carsInSort[i].x2 = carsIn[carsInSort[i].id].x2 = i; insert(i, carsInSort[i].w); //cout << "insert w: " << carsInSort[i].w << endl; } REP(i, n) { scanf("%d %d %d %d", &x1_, &y1_, &x2_, &y2_); carsOut[i] = car(abs(y2_-y1_), max(x1_, x2_), i); } bool ok = 1; sort(carsOut, carsOut+n); REP(i, n) { car carOrig = carsIn[carsOut[i].id]; int q = query(0, carOrig.x2-1); //cout << "id: " << carOrig.id << ", q: " << q << ", right: " << carOrig.x2-1 << endl; if(q > w-carOrig.w) { ok = 0; break; } insert(carOrig.x2, 0); } printf((ok ? "TAK\n" : "NIE\n")); memset(tree, 0, (2*MAX_M-1)*sizeof(int)); } } //system("pause"); return 0; } |