1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/* Author: Dominik Wójt */
/* Problem: Bohater, Potyczki Algorytmiczne 2014 */

#include <iostream>
#include <cstdlib>
#include <vector>
#include <algorithm>

#define MY_ASSERT(condition) \
    do \
    { \
        if(!(condition)) \
        { \
            std::cerr << "assert failed: " << #condition << std::endl; \
            std::abort(); \
        } \
    } \
    while(false)
//------------------------------------------------------------------------------
typedef long int lint;
typedef long int llint;
//------------------------------------------------------------------------------
template<typename T>
T checked_read(const T min, const T max)
{
    T n;
    std::cin >> n;
    MY_ASSERT(std::cin);
    MY_ASSERT(min<=n && n<=max);
    return n;
}
//------------------------------------------------------------------------------
template<typename T>
T round_up(const T a, const T b)
{
    return a%b ? a+b : a;
}
//------------------------------------------------------------------------------
template<typename T>
T round_down(const T a, const T b)
{
    return a - a%b;
}
//------------------------------------------------------------------------------
template<typename T>
T divide_ceil(const T a, const T b)
{
    return (a+b-1)/b;
}
//------------------------------------------------------------------------------
template<typename T>
T log2_ceil(const T x)
{
    T base = 1;
    T log2 = 0;
    while(x>base)
    {
        log2++;
        base = 1<<log2;
    }
    return log2;
}
//------------------------------------------------------------------------------
template<typename TElement, typename TCompare>
void merge_sort(std::vector<TElement> &vector, TCompare compare)
{
    typedef std::vector<TElement> Vector;
    typedef typename Vector::iterator Iterator;
    Vector buffer(vector.size());

    Iterator source_begin = vector.begin(), source_end = vector.end();
    Iterator target_begin = buffer.begin(), target_end = buffer.end();
    for(size_t chunk_size=1; chunk_size<vector.size(); chunk_size*=2)
    {
        size_t partition_size = round_down(round_up(vector.size(), chunk_size),
            2*chunk_size)/2;
        Iterator target = target_begin;
        Iterator b0=source_begin, b1=source_begin+partition_size;
        while(b0 != source_begin+partition_size)
        {
            Iterator next_b1 = std::min(b1+chunk_size, source_end);
            target = std::merge(b0, b0+chunk_size, b1, next_b1, target,
                compare);
            b0+=chunk_size;
            b1=next_b1;
        }
        if(target!=target_end)
            target = std::copy(b1, source_end, target);
        MY_ASSERT(target==target_end);
        std::swap(source_begin, target_begin);
        std::swap(source_end, target_end);
    }
    if(source_begin!=vector.begin())
        std::swap(vector, buffer);
}
//------------------------------------------------------------------------------
struct Car
{
    lint source_x;
    lint target_x;
    lint source_index;
    lint target_index;
    lint height;
};
//------------------------------------------------------------------------------
bool less_source_x(const Car &a, const Car &b)
{
    return a.source_x < b.source_x;
}
//------------------------------------------------------------------------------
bool less_target_x(const Car &a, const Car &b)
{
    return a.target_x < b.target_x;
}
//------------------------------------------------------------------------------
template<typename TElement, typename TCompare>
class Compare_index_adaptor
{
    const std::vector<TElement> &m_vector;
    TCompare m_compare;
public:
    Compare_index_adaptor(const std::vector<TElement> &vector,
        TCompare compare) :
        m_vector(vector),
        m_compare(compare)
    { }
    bool operator()(size_t i, size_t j)
    {
        return m_compare(m_vector[i], m_vector[j]);
    }
};
//------------------------------------------------------------------------------
template<typename TElement, typename TCompare>
Compare_index_adaptor<TElement, TCompare> make_compare_index_adaptor(
    const std::vector<TElement> &vector, TCompare compare)
{
    return Compare_index_adaptor<TElement, TCompare>(vector, compare);
}
//------------------------------------------------------------------------------
class Height_tree
{
    const lint m_n;
    std::vector<lint> m_data;
public:
    Height_tree(lint n) :
        m_n(1<<log2_ceil(n)),
        m_data(2*m_n, 0)
    { }
    void put(lint i, lint height)
    {
        lint j = i+m_n;
        m_data[j] = height;
        j = get_parrent(j);
        while(j > 0)
        {
            if(m_data[j] < m_data[get_left_child(j)])
                m_data[j] = m_data[get_left_child(j)];
            else if(m_data[j] < m_data[get_right_child(j)])
                m_data[j] = m_data[get_right_child(j)];
            else
                break;
            j = get_parrent(j);
        }
    }
    lint get_highest(lint begin, lint end)
    {
        lint top = 0;

        // naive implementation:
        //for(lint i=begin; i<end; i++)
        //    top = std::max(top, m_data[m_n+i]);

        lint i = begin;
        while(i < end)
        {
            lint range = 1;
            lint j = i+m_n;
            while(is_left_child(j) && i+range*2<end)
            {
                j = get_parrent(j);
                range *= 2;
                MY_ASSERT(j > 0);
            }
            top = std::max(top, m_data[j]);
            i+=range;
        }
        return top;
    }
private:
    lint get_parrent(lint j)
    {
        return j/2;
    }
    lint get_left_child(lint j)
    {
        return j*2;
    }
    lint get_right_child(lint j)
    {
        return j*2 + 1;
    }
    bool is_left_child(lint j)
    {
        return j%2 == 0;
    }
};
//------------------------------------------------------------------------------
void process_case()
{
    const lint n = checked_read<lint>(1, 50000);
    const lint w = checked_read<lint>(1, 1000000000);

    std::vector<Car> cars(n);
    for(lint i=0; i<n; i++)
    {
        Car &car = cars[i];
        const lint x0 = checked_read<lint>(0,1000000000);
        const lint y0 = checked_read<lint>(0,w);
        const lint x1 = checked_read<lint>(0,1000000000);
        const lint y1 = checked_read<lint>(0,w);
        car.source_x = x0;
        MY_ASSERT(x0 < x1);
        MY_ASSERT(y0 < y1);
        car.height = y1-y0;
    }
    for(lint i=0; i<n; i++)
    {
        Car &car = cars[i];
        const lint x0 = checked_read<lint>(0,1000000000);
        const lint y0 = checked_read<lint>(0,w);
        const lint x1 = checked_read<lint>(0,1000000000);
        const lint y1 = checked_read<lint>(0,w);
        car.target_x = x0;
        MY_ASSERT(x0 < x1);
        MY_ASSERT(y0 < y1);
        MY_ASSERT(car.height == y1-y0);
    }

    std::vector<lint> source_order(n);
    std::vector<lint> target_order(n);
    for(lint i=0; i<n; i++)
    {
        source_order[i] = target_order[i] = i;
    }
    merge_sort(source_order, make_compare_index_adaptor(cars, less_source_x));
    merge_sort(target_order, make_compare_index_adaptor(cars, less_target_x));
    for(lint i=0; i<n; i++)
    {
        cars[source_order[i]].source_index = i;
        cars[target_order[i]].target_index = i;
        MY_ASSERT(i==0 ||
            cars[source_order[i-1]].source_x<=cars[source_order[i]].source_x);
        MY_ASSERT(i==0 ||
            cars[target_order[i-1]].target_x<=cars[target_order[i]].target_x);
    }

    // this part can be tought as of some cheaty kind of insertion sort
    Height_tree height_tree(n);
    for(lint i=0; i<n; i++)
    {
        int car_index = source_order[i];
        Car &car = cars[car_index];
        if(car.height <= w-height_tree.get_highest(car.target_index, n))
        {
            height_tree.put(car.target_index, car.height);
        }
        else
        {
            std::cout << "NIE\n";
            return;
        }
    }
    std::cout << "TAK\n";
}
//------------------------------------------------------------------------------
int main()
{
    const int t = checked_read<int>(1, 20);
    for(int i=0; i<t; i++)
        process_case();
    return 0;
}