#include <vector> #include <cstddef> #include <cstdio> #include <algorithm> /* moje drzewko - https://github.com/prazek/structures/blob/master/interval_tree.h */ template < typename Object, typename Query, class Alloc = std::allocator<Object> > class interval_tree { size_t size_; std::vector<Object, Alloc> vec_; Query query_; class interElement; friend class interElement; public: typedef Object value_type; typedef Alloc allocator_type; explicit interval_tree(size_t size = 0, const Object &val = Object()) : size_(calc(size)), vec_(size_ * 2, val) { build(); } interElement & operator[] (size_t index) { element_.index_ = index + size_; element_.ptr_ = this; return element_; } const Object & operator[] (size_t index) const { return vec_.at(index+size_); } Object query(size_t lhs, size_t rhs) const { lhs += size_; rhs += size_; Object result = vec_.at(lhs); if (lhs != rhs) result = query_(result, vec_.at(rhs)); while ((lhs >> 1) != (rhs >> 1)) { if (!(lhs & 1)) result = query_(result, vec_[lhs + 1]); if (rhs & 1) result = query_(result, vec_[rhs - 1]); lhs >>= 1; rhs >>= 1; } return result; } private: /* * Function sets valid values to the rest of the tree, based on * values in the leafs */ void build() { for (int i = size_ - 1; i > 0 ; --i) { vec_[i] = query_(vec_[i*2], vec_[i*2 + 1]); } } /* * Function to calculate size of tree used to make full binary tree. * Returns first bigger or equal power of 2 than p. */ int calc(unsigned int p) { if (p == 0) return 0; int res = 1; while (res <= p){ res <<= 1; } return res; } void insert(size_t index) { index /= 2; while (index != 1) { vec_[index] = query_(vec_[index*2], vec_[index*2+1]); index /= 2; } } class interElement { friend class interval_tree; size_t index_; interval_tree<Object, Query, Alloc> *ptr_; interElement(interval_tree *ref) : ptr_(ref) { } public: interElement() {} #define OPERATOR(OP)\ const Object & operator OP (const Object &val){\ ptr_->vec_.at(index_) OP val;\ ptr_->insert(index_);\ return ptr_->vec_[index_];\ } OPERATOR(=) OPERATOR(+=) OPERATOR(-=) OPERATOR(*=) OPERATOR(%=) OPERATOR(/=) OPERATOR(|=) OPERATOR(&=) OPERATOR(^=) OPERATOR(>>=) OPERATOR(<<=) #undef OPERATOR operator const Object& () const { return ptr_->vec_.at(index_); } }; static interElement element_; }; template <typename Object,typename Query,class Alloc> typename interval_tree<Object, Query, Alloc>::interElement interval_tree<Object, Query, Alloc>::element_; bool oblicz(); int main() { int t; scanf("%d", &t); while(t--) { printf("%s\n", oblicz() ? "TAK" : "NIE"); } } struct Auto { Auto(int x = 0, int pos = 0, int h = 0) : x_(x), pos_(pos), h_(h) { } bool operator < (const Auto &samochod) const { return x_ < samochod.x_; } int getHigh() const //Lets all get high { return h_; } //scores on potyczki 2014 int getPosition() const { return pos_; } private: int x_, pos_, h_; }; void getAuta(std::vector<Auto> &auta, int n) { for (int i = 1 ; i <= n ; i++) { int x1, y1, x2, y2; scanf("%d %d %d %d", &x1, &y1, &x2, &y2); auta[i] = Auto(std::min(x1, x2), i, std::abs(y2-y1)); } std::sort(auta.begin() + 1, auta.end()); } struct Max { int operator()(int a, int b) const { return std::max(a, b); } }; bool oblicz() { int n, h; scanf("%d %d", &n, &h); interval_tree<int, Max> drzewo(n); std::vector<Auto> auta(n + 1); getAuta(auta, n); std::vector<int> indexys(n + 1); for (int i = 1 ; i <= n ; i++) { drzewo[i] = auta[i].getHigh(); indexys[auta[i].getPosition()] = i; } std::vector<Auto> auta2(n + 1); getAuta(auta2, n); for (int i = 1 ; i <= n ; i++) { int index = indexys[auta2[i].getPosition()]; if (drzewo.query(0, index - 1) + auta2[i].getHigh() > h) { return false; } drzewo[index] = 0; } return true; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | #include <vector> #include <cstddef> #include <cstdio> #include <algorithm> /* moje drzewko - https://github.com/prazek/structures/blob/master/interval_tree.h */ template < typename Object, typename Query, class Alloc = std::allocator<Object> > class interval_tree { size_t size_; std::vector<Object, Alloc> vec_; Query query_; class interElement; friend class interElement; public: typedef Object value_type; typedef Alloc allocator_type; explicit interval_tree(size_t size = 0, const Object &val = Object()) : size_(calc(size)), vec_(size_ * 2, val) { build(); } interElement & operator[] (size_t index) { element_.index_ = index + size_; element_.ptr_ = this; return element_; } const Object & operator[] (size_t index) const { return vec_.at(index+size_); } Object query(size_t lhs, size_t rhs) const { lhs += size_; rhs += size_; Object result = vec_.at(lhs); if (lhs != rhs) result = query_(result, vec_.at(rhs)); while ((lhs >> 1) != (rhs >> 1)) { if (!(lhs & 1)) result = query_(result, vec_[lhs + 1]); if (rhs & 1) result = query_(result, vec_[rhs - 1]); lhs >>= 1; rhs >>= 1; } return result; } private: /* * Function sets valid values to the rest of the tree, based on * values in the leafs */ void build() { for (int i = size_ - 1; i > 0 ; --i) { vec_[i] = query_(vec_[i*2], vec_[i*2 + 1]); } } /* * Function to calculate size of tree used to make full binary tree. * Returns first bigger or equal power of 2 than p. */ int calc(unsigned int p) { if (p == 0) return 0; int res = 1; while (res <= p){ res <<= 1; } return res; } void insert(size_t index) { index /= 2; while (index != 1) { vec_[index] = query_(vec_[index*2], vec_[index*2+1]); index /= 2; } } class interElement { friend class interval_tree; size_t index_; interval_tree<Object, Query, Alloc> *ptr_; interElement(interval_tree *ref) : ptr_(ref) { } public: interElement() {} #define OPERATOR(OP)\ const Object & operator OP (const Object &val){\ ptr_->vec_.at(index_) OP val;\ ptr_->insert(index_);\ return ptr_->vec_[index_];\ } OPERATOR(=) OPERATOR(+=) OPERATOR(-=) OPERATOR(*=) OPERATOR(%=) OPERATOR(/=) OPERATOR(|=) OPERATOR(&=) OPERATOR(^=) OPERATOR(>>=) OPERATOR(<<=) #undef OPERATOR operator const Object& () const { return ptr_->vec_.at(index_); } }; static interElement element_; }; template <typename Object,typename Query,class Alloc> typename interval_tree<Object, Query, Alloc>::interElement interval_tree<Object, Query, Alloc>::element_; bool oblicz(); int main() { int t; scanf("%d", &t); while(t--) { printf("%s\n", oblicz() ? "TAK" : "NIE"); } } struct Auto { Auto(int x = 0, int pos = 0, int h = 0) : x_(x), pos_(pos), h_(h) { } bool operator < (const Auto &samochod) const { return x_ < samochod.x_; } int getHigh() const //Lets all get high { return h_; } //scores on potyczki 2014 int getPosition() const { return pos_; } private: int x_, pos_, h_; }; void getAuta(std::vector<Auto> &auta, int n) { for (int i = 1 ; i <= n ; i++) { int x1, y1, x2, y2; scanf("%d %d %d %d", &x1, &y1, &x2, &y2); auta[i] = Auto(std::min(x1, x2), i, std::abs(y2-y1)); } std::sort(auta.begin() + 1, auta.end()); } struct Max { int operator()(int a, int b) const { return std::max(a, b); } }; bool oblicz() { int n, h; scanf("%d %d", &n, &h); interval_tree<int, Max> drzewo(n); std::vector<Auto> auta(n + 1); getAuta(auta, n); std::vector<int> indexys(n + 1); for (int i = 1 ; i <= n ; i++) { drzewo[i] = auta[i].getHigh(); indexys[auta[i].getPosition()] = i; } std::vector<Auto> auta2(n + 1); getAuta(auta2, n); for (int i = 1 ; i <= n ; i++) { int index = indexys[auta2[i].getPosition()]; if (drzewo.query(0, index - 1) + auta2[i].getHigh() > h) { return false; } drzewo[index] = 0; } return true; } |