#include<iostream> #include<vector> #include<sstream> #include<algorithm> #include<cmath> using namespace std; struct Car { const int x0, y0; const int width, height; const int car_no; Car(int _x0, int _y0, int _width, int _height, int _car_no) : x0(_x0), y0(_y0), width(_width), height(_height), car_no(_car_no) {} }; Car* const CAN_NOT_MOVE = new Car(-1, -1, -1, -1, -1); Car* create(int x1, int y1, int x2, int y2, int _idx) { int _x0 = min(x1, x2); int _y0 = min(y1, y2); int _width = max(x1, x2) - _x0; int _height = max(y1, y2) - _y0; return new Car(_x0, _y0, _width, _height, _idx); } bool is_common(int x0, int x1, int y0, int y1) { // make sure x0 <= y0 if(x0 > y0) { int a, b; a = x0; b = x1; x0 = y0; x1 = y1; y0 = a; y1 = b; } return x0 < y0 && y0 < x1; } // c1 < c2 // to order the cars bool gt(Car* c1, Car* c2) { return (c1)->x0 < (c2)->x0 || ( (c1)->y0 < (c2)->y0 && is_common((c1)->x0, (c1)->width, (c2)->x0, (c2)->width) ); } void read_cars(vector<Car*>& cars) { int i = 0; for(auto it = cars.begin(); it != cars.end(); it++, i++) { int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; *it = create(x1, y1, x2, y2, i); } } void init_where_to_go(vector<int>& where_to_go, vector<Car*>& expected_cars) { int i = 0; for(auto it = expected_cars.begin(); it != expected_cars.end(); it++, i++) { where_to_go[(*it)->car_no] = i; } } int sign(int v) { if(v < 0) return -1; return 1; } Car* move_car(Car* car, int car_idx, int goto_idx, vector<Car*>& start_points, int const height_constraint) { int dist = goto_idx - car_idx; int direct = sign(dist); dist = abs(dist); if(dist == 0) { return car; } for(int i = car_idx + direct; abs(i - car_idx) <= dist; i += direct) { Car* passing = start_points[i]; if (passing != NULL && (((long)passing->height) + ((long)car->height) > ((long)height_constraint)) ) { return CAN_NOT_MOVE; } } Car* swp = start_points[goto_idx]; start_points[goto_idx] = car; car = swp; return car; } bool is_it_possible_to_arange(vector<Car*>& start_points, vector<int>& where_to_go, int const height_constraint) { for(auto sp = start_points.begin(); sp != start_points.end(); sp++) { Car* car = *sp; int goto_idx = where_to_go[car->car_no]; int car_idx = distance(start_points.begin(), sp); if(goto_idx != car_idx) { *sp = NULL; while(car != NULL) { goto_idx = where_to_go[car->car_no]; car = move_car(car, car_idx, goto_idx, start_points, height_constraint); if(car == CAN_NOT_MOVE) { return false; } car_idx = goto_idx; } } } return true; } int main() { int t; cin >> t; for(int i = 0; i < t; i++) { int n, // 1 <= n <= 50 000 w; // 1 <= w <= 10^9 cin >> n >> w; vector<Car*> start_points(n); read_cars(start_points); sort(start_points.begin(), start_points.end(), gt); vector<Car*> expected_cars(n); read_cars(expected_cars); sort(expected_cars.begin(), expected_cars.end(), gt); //map: car_no -> expected position vector<int> where_to_go(n); init_where_to_go(where_to_go, expected_cars); bool answer = is_it_possible_to_arange(start_points, where_to_go, w); cout << (answer ? "TAK" : "NIE") << endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | #include<iostream> #include<vector> #include<sstream> #include<algorithm> #include<cmath> using namespace std; struct Car { const int x0, y0; const int width, height; const int car_no; Car(int _x0, int _y0, int _width, int _height, int _car_no) : x0(_x0), y0(_y0), width(_width), height(_height), car_no(_car_no) {} }; Car* const CAN_NOT_MOVE = new Car(-1, -1, -1, -1, -1); Car* create(int x1, int y1, int x2, int y2, int _idx) { int _x0 = min(x1, x2); int _y0 = min(y1, y2); int _width = max(x1, x2) - _x0; int _height = max(y1, y2) - _y0; return new Car(_x0, _y0, _width, _height, _idx); } bool is_common(int x0, int x1, int y0, int y1) { // make sure x0 <= y0 if(x0 > y0) { int a, b; a = x0; b = x1; x0 = y0; x1 = y1; y0 = a; y1 = b; } return x0 < y0 && y0 < x1; } // c1 < c2 // to order the cars bool gt(Car* c1, Car* c2) { return (c1)->x0 < (c2)->x0 || ( (c1)->y0 < (c2)->y0 && is_common((c1)->x0, (c1)->width, (c2)->x0, (c2)->width) ); } void read_cars(vector<Car*>& cars) { int i = 0; for(auto it = cars.begin(); it != cars.end(); it++, i++) { int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; *it = create(x1, y1, x2, y2, i); } } void init_where_to_go(vector<int>& where_to_go, vector<Car*>& expected_cars) { int i = 0; for(auto it = expected_cars.begin(); it != expected_cars.end(); it++, i++) { where_to_go[(*it)->car_no] = i; } } int sign(int v) { if(v < 0) return -1; return 1; } Car* move_car(Car* car, int car_idx, int goto_idx, vector<Car*>& start_points, int const height_constraint) { int dist = goto_idx - car_idx; int direct = sign(dist); dist = abs(dist); if(dist == 0) { return car; } for(int i = car_idx + direct; abs(i - car_idx) <= dist; i += direct) { Car* passing = start_points[i]; if (passing != NULL && (((long)passing->height) + ((long)car->height) > ((long)height_constraint)) ) { return CAN_NOT_MOVE; } } Car* swp = start_points[goto_idx]; start_points[goto_idx] = car; car = swp; return car; } bool is_it_possible_to_arange(vector<Car*>& start_points, vector<int>& where_to_go, int const height_constraint) { for(auto sp = start_points.begin(); sp != start_points.end(); sp++) { Car* car = *sp; int goto_idx = where_to_go[car->car_no]; int car_idx = distance(start_points.begin(), sp); if(goto_idx != car_idx) { *sp = NULL; while(car != NULL) { goto_idx = where_to_go[car->car_no]; car = move_car(car, car_idx, goto_idx, start_points, height_constraint); if(car == CAN_NOT_MOVE) { return false; } car_idx = goto_idx; } } } return true; } int main() { int t; cin >> t; for(int i = 0; i < t; i++) { int n, // 1 <= n <= 50 000 w; // 1 <= w <= 10^9 cin >> n >> w; vector<Car*> start_points(n); read_cars(start_points); sort(start_points.begin(), start_points.end(), gt); vector<Car*> expected_cars(n); read_cars(expected_cars); sort(expected_cars.begin(), expected_cars.end(), gt); //map: car_no -> expected position vector<int> where_to_go(n); init_where_to_go(where_to_go, expected_cars); bool answer = is_it_possible_to_arange(start_points, where_to_go, w); cout << (answer ? "TAK" : "NIE") << endl; } return 0; } |