1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//Maciej Poleski
#ifdef DEBUG
#define _GLIBCXX_CONCEPT_CHECKS
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cassert>
namespace
{
namespace Wrapper
{
std::ifstream in;
std::ofstream out;
}
void init(int argc, char **argv)
{
    if(argc != 3)
    {
        std::cerr << "Potrzeba dokładnie dwóch argumentów\n";
        std::abort();
    }
    Wrapper::in.open(argv[1]);
    Wrapper::out.open(argv[2]);
}
}
#define check(x) assert(x)
#else
#ifndef NDEBUG
#define NDEBUG
#endif
#define check(x)
#include <iostream>
namespace
{
namespace Wrapper
{
std::istream &in = std::cin;
std::ostream &out = std::cout;
}
}
#endif

#include <cstdint>

namespace
{
namespace Wrapper
{
typedef std::uint_fast64_t uint_fast64_t;
typedef std::uint_fast32_t uint_fast32_t;
typedef std::uint_fast16_t uint_fast16_t;
typedef std::uint_fast8_t uint_fast8_t;

typedef std::uint64_t uint64_t;
typedef std::uint32_t uint32_t;
typedef std::uint16_t uint16_t;
typedef std::uint8_t uint8_t;

typedef std::int_fast64_t int_fast64_t;
typedef std::int_fast32_t int_fast32_t;
typedef std::int_fast16_t int_fast16_t;
typedef std::int_fast8_t int_fast8_t;

typedef std::int64_t int64_t;
typedef std::int32_t int32_t;
typedef std::int16_t int16_t;
typedef std::int8_t int8_t;

typedef std::size_t size_t;
}

}

#include <string>
#include <algorithm>
#include <limits>
#include <locale>
#include <cstring>
#include <utility>
#include <cstdlib>
#include <random>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <list>
#include <iomanip>
#include <set>
#include <map>
#include <memory>
#include <functional>
#include <unordered_map>
#include <unordered_set>
#include <complex>
#include <type_traits>

#include "message.h"

namespace
{
using namespace Wrapper;

// Numeruje od 0
static std::pair<uint_fast32_t, uint_fast32_t> getXY(const uint_fast32_t n, const uint_fast32_t nx, const uint_fast32_t ny)
{
    uint_fast32_t result = 0;
    uint_fast32_t rx = 0, ry = 0;
    while(result < n)
    {
        if(nx >= ny)
        {
            if(ry < ny - 1)
            {
                result += ry + 2;
                ry += 1;
            }
            else
            {
                result += std::min(ny, nx - rx - 1);
                rx += 1;
            }
        }
        else
        {
            if(ry < nx - 1)
            {
                result += ry + 2;
                ry += 1;
            }
            else if(ry < ny - 1)
            {
                result += nx;
                ry += 1;
            }
            else
            {
                result += nx - rx - 1;
                rx += 1;
            }
        }
    }
    uint_fast32_t diff = result - n;
    rx += diff;
    ry -= diff;
    return std::make_pair(rx, ry);
}

static uint_fast32_t getRightNode(const uint_fast32_t n, const uint_fast32_t nx, const uint_fast32_t ny, const uint_fast32_t x, const uint_fast32_t y)
{
    return n + std::min(x, n - ny - 1) + std::min(y + 1, nx - x - 1);
}

static uint_fast32_t getBottomNode(const uint_fast32_t n, const uint_fast32_t nx, const uint_fast32_t ny, const uint_fast32_t x, const uint_fast32_t y)
{
    return n + std::min(x, n - ny - 1) + std::min(y + 1, nx - x - 1) + 1;
}

static int_fast32_t getTopNode(const uint_fast32_t n, const uint_fast32_t nx, const uint_fast32_t ny, const uint_fast32_t x, const uint_fast32_t y)
{
    return n - (std::min(nx - x, y + 1) + std::min(x, ny - y));
}

static int_fast32_t getLeftNode(const uint_fast32_t n, const uint_fast32_t nx, const uint_fast32_t ny, const uint_fast32_t x, const uint_fast32_t y)
{
    return n + 1 - (std::min(nx - x, y + 1) + std::min(x, ny - y));
}

static constexpr uint_fast32_t tasksPerNode = 500; // Sprawdzić limit trasmisji danych

static_assert(tasksPerNode <= 500, "Węzeł może wysłać 1000 wiadomości, zadanie wymaga 2");

static const auto numberOfNodes = NumberOfNodes();
static const auto myNodeId = MyNodeId();

struct Info
{
    uint_fast32_t max;
    uint_fast32_t arg;
};

static Info bestInfo(const Info &lhs, const Info &rhs)
{
    if((lhs.max < rhs.max) || ((lhs.max == rhs.max) && (lhs.arg < rhs.arg)))
    {
        return lhs;
    }
    return rhs;
}

static std::unordered_map<uint_fast32_t, Info*> top_cache;
void receiveFromTop(uint_fast32_t node, Info *&result)
{
    while(top_cache.find(node) == top_cache.end())
    {
        const auto n=Receive(node%numberOfNodes);
        const uint_fast32_t rn=GetInt(n);
        const uint_fast32_t size=GetInt(n);
        Info *vec=new Info[size];
        for(uint_fast32_t i=0;i<size;++i)
        {
            Info ii;
            ii.max=GetInt(n);
            ii.arg=GetInt(n);
            vec[i]=ii;
        }
        top_cache[rn]=vec;
    }
    delete [] result;
    result = top_cache[node];
    top_cache.erase(node);
}

static std::unordered_map<uint_fast32_t, Info*> left_cache;
void receiveFromLeft(uint_fast32_t node, Info *&result)
{
    while(left_cache.find(node) == left_cache.end())
    {
        const auto n=Receive(node%numberOfNodes);
        const uint_fast32_t rn=GetInt(n);
        const uint_fast32_t size=GetInt(n);
        Info *vec=new Info[size];
        for(uint_fast32_t i=0;i<size;++i)
        {
            Info ii;
            ii.max=GetInt(n);
            ii.arg=GetInt(n);
            vec[i]=ii;
        }
        left_cache[rn]=vec;
    }
    delete [] result;
    result = left_cache[node];
    left_cache.erase(node);
}

inline static void solution()
{
    using std::swap;

//     int nx=3;
//     int ny=5;
//     for(int y=0;y<ny;++y)
//     {
//         for(int x=0;x<nx;++x)
//         {
//             out<<getTopNode(0,nx,ny,x,y)<<' ';
//         }
//         out<<'\n';
//     }

    uint_fast32_t n, m;
    in >> n >> m;
    char *stringA = new char[n + 2];
    char *stringB = new char[m + 2];

    in.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
    in.read(stringA + 1, n);
    in.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
    in.read(stringB + 1, m);
    stringA[n + 1] = '\0';
    stringB[m + 1] = '\0';

    const uint_fast32_t taskPerDimHint = std::sqrt(tasksPerNode * numberOfNodes);
    const uint_fast32_t taskSizeForDimA = std::max<uint_fast32_t>(1, n / taskPerDimHint + !!(n % taskPerDimHint));
    const uint_fast32_t taskSizeForDimB = std::max<uint_fast32_t>(1, m / taskPerDimHint + !!(m % taskPerDimHint));
    const uint_fast32_t dimASize = n / taskSizeForDimA + !!(n % taskSizeForDimA);
    const uint_fast32_t dimBSize = m / taskSizeForDimB + !!(m % taskSizeForDimB);

    for(uint_fast32_t id = myNodeId;; id += numberOfNodes)
    {
        if(id >= dimASize * dimBSize)
        {
            break;    // Grid został obliczony
        }
        auto p = getXY(id, dimASize, dimBSize);
        const uint_fast32_t x = p.first;
        const uint_fast32_t y = p.second;

        const char *aBegin = stringA + 1 + taskSizeForDimA * x;
        const char *aEnd = std::min<const char *>(stringA + 1 + n, aBegin + taskSizeForDimA);
        const char *bBegin = stringB + 1 + taskSizeForDimB * y;
        const char *bEnd = std::min<const char *>(stringB + 1 + m, bBegin + taskSizeForDimB);

        Info *aInfo = new Info[taskSizeForDimA + 1];
        Info *bInfo = new Info[taskSizeForDimB];
        Info *prevAInfo = new Info[taskSizeForDimA + 1];
        Info *resultBInfo = new Info[taskSizeForDimB];  // Być może przycięte na brzegu

        if(y == 0)
        {
            uint_fast32_t i = aBegin - stringA - 1;
            for(auto ptr = prevAInfo, e = prevAInfo + (aEnd - aBegin) + 1; ptr != e; ++ptr)
            {
                ptr->max = i++;
                ptr->arg = 0;
            }
        }
        else
        {
            const uint_fast32_t topNode = getTopNode(id, dimASize, dimBSize, x, y);
            receiveFromTop(topNode,prevAInfo);
        }
        if(x == 0)
        {
            uint_fast32_t i = bBegin - stringB;
            for(auto ptr = bInfo, e = bInfo + (bEnd - bBegin); ptr != e; ++ptr)
            {
                ptr->max = i++;
                ptr->arg = 0;
            }
        }
        else
        {
            const uint_fast32_t leftNode = getLeftNode(id, dimASize, dimBSize, x, y);
            receiveFromLeft(leftNode,bInfo);
        }

        // Klasyczna odległość edycyjna:
        auto bInfoPtr = bInfo;
        auto bInfoResultPtr = resultBInfo;
        for(auto bPtr = bBegin; bPtr != bEnd; ++bPtr)
        {
            uint_fast32_t aInfoIdx = 0;
            aInfo[aInfoIdx++] = *bInfoPtr++;
            for(auto aPtr = aBegin; aPtr != aEnd; ++aPtr)
            {
                if(*bPtr == *aPtr)
                {
                    aInfo[aInfoIdx] = prevAInfo[aInfoIdx - 1];
                }
                else
                {
                    Info best = prevAInfo[aInfoIdx];
                    best.max += 1;
                    Info temp = aInfo[aInfoIdx - 1];
                    temp.max += 1;
                    best = bestInfo(best, temp);
                    temp = prevAInfo[aInfoIdx - 1];
                    temp.max += 1;
                    if(*aPtr < *bPtr)
                    {
                        temp.arg += 1;    // Załamanie nerwowe
                    }
                    best = bestInfo(best, temp);
                    aInfo[aInfoIdx] = best;
                }
                aInfoIdx += 1;
            }
            *bInfoResultPtr++ = aInfo[aInfoIdx - 1];
            swap(aInfo, prevAInfo);
        }

        // Ostatni wiersz jest w prevAInfo

        if(x < dimASize - 1)
        {
            // Przesyłam dalej
            const uint_fast32_t rightNode = getRightNode(id, dimASize, dimBSize, x, y);
            const auto node = rightNode % numberOfNodes;
            PutInt(node, id);
            PutInt(node,(bEnd - bBegin));
            for(auto ptr = resultBInfo, e = resultBInfo + (bEnd - bBegin); ptr != e; ++ptr)
            {
                PutInt(node, ptr->max);
                PutInt(node, ptr->arg);
            }
            Send(node);
        }

        if(y < dimBSize - 1)
        {
            const uint_fast32_t bottomNode = getBottomNode(id, dimASize, dimBSize, x, y);
            const auto node = bottomNode % numberOfNodes;
            PutInt(node, id);
            PutInt(node,(aEnd - aBegin) + 1);
            for(auto ptr = prevAInfo, e = prevAInfo + (aEnd - aBegin) + 1; ptr != e; ++ptr)
            {
                PutInt(node, ptr->max);
                PutInt(node, ptr->arg);
            }
            Send(node);
        }

        if((x == dimASize - 1) && (y == dimBSize - 1))
        {
            const auto lastIdx = aEnd - aBegin;
            out << prevAInfo[lastIdx].max << ' ' << prevAInfo[lastIdx].arg << '\n';
        }

        delete [] resultBInfo;
        delete [] prevAInfo;
        delete [] bInfo;
        delete [] aInfo;
    }

    delete [] stringB;
    delete [] stringA;
}

} // namespace

int main(int argc, char **argv)
{
    std::ios_base::sync_with_stdio(false);
#ifdef DEBUG
    init(argc, argv);
#else
    (void)argc;
    (void)argv;
#endif
    solution();
    return 0;
}