#include<cstdio> #include<algorithm> #include<vector> #include<set> #include<queue> #include<stack> #include<cmath> #include<map> using namespace std; typedef pair<int,int> PI; typedef long long LL; typedef double D; #define FI first #define SE second #define MP make_pair #define PB push_back #define R(I,N) for(int I=0;I<N;I++) #define F(I,A,B) for(int I=A;I<B;I++) #define FD(I,N) for(int I=N-1;I>=0;I--) #define make(A) scanf("%d",&A) #define MAX 100001 #define DB 0 #define db if(DB)printf int n,k,kt,t[MAX][5]; int gl,p[5]; inline int daj_nr(){ int wyn = 0; R(i,k){ wyn*=5; wyn+=p[i]; } return wyn; } bool qkol(int a,int b){ return t[gl][a] < t[gl][b]; } bool odw; int mapp[4000]; LL tr[61][5]; int kol(int nr){ gl = nr; R(i,k)p[i] = i; sort(p,p+k,qkol); odw = 0; R(i,k){ if(p[i]==0){ break; } if(p[i]==1){ odw=1; R(i,k/2)swap(p[i],p[k-i-1]); break; } } int wyn = 0; return mapp[daj_nr()]; } // Simplex z biblioteczki Marka Cygana typedef pair<int,int> PII; typedef vector<int> VI; #define MP make_pair #define FOR(v,p,k) for(int v=p;v<=k;++v) #define FORD(v,p,k) for(int v=p;v>=k;--v) #define REP(i,n) for(int i=0;i<(n);++i) #define VAR(v,i) __typeof(i) v=(i) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define PB push_back #define ST first #define ND second #define SIZE(x) (int)x.size() #define ALL(c) c.begin(),c.end() const double EPS = 1e-9; namespace Simplex{ /*jak chcemy zmienic typ, to zmieniamy typedef'a oraz wartosc EPS, na doublach tez powinno dzialac, ale troche szybciej i mniej dokladnie*/ #define EPS 1E-16 typedef long double T; typedef vector<T> VT; vector<VT> A; VT b,c,res; VI kt,N; int m; inline void pivot(int k,int l,int e){ int x=kt[l]; T p=A[l][e]; REP(i,k) A[l][i]/=p; b[l]/=p; N[e]=0; REP(i,m) if (i!=l) b[i]-=A[i][e]*b[l],A[i][x]=A[i][e]*-A[l][x]; REP(j,k) if (N[j]){ c[j]-=c[e]*A[l][j]; REP(i,m) if (i!=l) A[i][j]-=A[i][e]*A[l][j]; } kt[l]=e; N[x]=1; c[x]=c[e]*-A[l][x]; } /*k == #zmiennych bazowych + #zmiennych niebazowych*/ VT doit(int k){ VT res; T best; while (1){ int e=-1,l=-1; REP(i,k) if (N[i] && c[i]>EPS) {e=i; break;} if (e==-1) break; REP(i,m) if (A[i][e]>EPS && (l==-1 || best>b[i]/A[i][e])) best=b[ l=i ]/A[i][e]; if (l==-1) /*rozwiazanie nieograniczone,zwracam cokolwiek*/ return VT(); pivot(k,l,e); } res.resize(k,0); REP(i,m) res[kt[i]]=b[i]; return res; } /*A*x<=b, maksymalizujemy x*c (a[0][0]*x[0]+a[0][1]*x[1]+...<=b[0]), dla x>=0*/ /*jak chcemy zeby xj moglo byc ujemne to podstawiamy zamiast xj dwie nowe */ /*zmiene (xj1-xj2), gdzie xj1,xj2>=0, funkcja zwraca najlepszy wektor, jesli */ /*rozwiazanie nie istnieje, lub jest nieograniczone, to zwracany jest pusty */ /*wektor */ VT simplex(vector<VT> &AA,VT &bb,VT &cc){ int n=AA[0].size(),k; m=AA.size(); k=n+m+1; kt.resize(m); b=bb; c=cc; c.resize(n+m); A=AA; REP(i,m){ A[i].resize(k); A[i][n+i]=1; A[i][k-1]=-1; kt[i]=n+i;} N=VI(k,1); REP(i,m) N[kt[i]]=0; int pos=min_element(ALL(b))-b.begin(); if (b[pos]<-EPS){ /*uwaga na epsilony*/ c=VT(k,0); c[k-1]=-1; pivot(k,pos,k-1); res=doit(k); if (res[k-1]>EPS) /*brak rozwiazan*/ return VT(); REP(i,m) if (kt[i]==k-1) REP(j,k-1) if (N[j] && (A[i][j]<-EPS || EPS<A[i][j])){ pivot(k,i,j); break; } c=cc; c.resize(k,0); REP(i,m) REP(j,k) if (N[j]) c[j]-=c[kt[i]]*A[i][j]; } res=doit(k-1); if (!res.empty()) res.resize(n); return res; } }; //Begin of the code typedef long double T; typedef vector<T> VT; LL odp[61]; vector<int> nc; void simplexuj(){ int w = kt*(k+1) + 1; int h = 2*kt*k + k; vector<VT> A(h,VT(w)); VT b(h),c(w),res; c[w-1] = -1; int ak = 0; R(i,k){ F(j,(i+1)*kt,(i+2)*kt) A[ak][j] = 1; A[ak][w-1] = -1; ak++; } R(i,kt)R(j,k){ A[ak][i] = 1; A[ak][i+(j+1)*kt] = -1; b[ak] = tr[i][j]; ak++; A[ak][i] = -1; A[ak][i+(j+1)*kt] = -1; b[ak] = -tr[i][j]; ak++; } res=Simplex::simplex(A,b,c); R(i,kt){ odp[i] = res[i] + 0.05; //fprintf(stderr,"%.6Lf\n",res[i]); if(abs(odp[i] - res[i]) > 0.1)nc.PB(i); } //printf("najlepszy wektor: "); REP(i,/*SIZE(res)*/kt) printf("x%d = %.6Lf, ",i,res[i]); //printf("\n"); T acc=0; REP(i,SIZE(res)) acc+=res[i]*c[i]; //fprintf(stderr,"%.6Lf\n",-acc); } void calkowite(){ int ncs = nc.size(); LL naj = -1; int mb = -1; R(i,(1<<ncs)){ R(j,ncs)if(i&(1<<j))odp[nc[j]]+=1; LL odl = 0; R(jj,k){ LL wyn = 0; R(ii,kt)wyn += abs(tr[ii][jj] - odp[ii]); db("%lld\n",wyn); odl = max(odl,wyn); } db("\n"); if(naj == -1 || odl < naj){ naj = odl; mb = i; } R(j,ncs)if(i&(1<<j))odp[nc[j]]-=1; } R(j,ncs)if(mb&(1<<j))odp[nc[j]]+=1; } void wyswietl(){ R(i,n){ int pom = kol(i); if(odw)R(j,k)t[i][j] *= -1; int zm = -1; db("%lld\n",odp[pom]); R(jj,k){ int j = p[jj]; db("%lld %d\n",tr[pom][j],t[i][j]); if(tr[pom][j]<=odp[pom]) zm = jj; } db("(%d)",zm); LL ile; if(zm == k-1) ile = 0; else ile = min(odp[pom] - tr[pom][p[zm]], LL(t[i][p[zm+1]] - t[i][p[zm]])); db("ile: %lld\n",ile); odp[pom] -= ile; db("wyn:"); printf("%lld ",(odw?-1:1) * (t[i][p[zm]] + ile)); db("\n"); } puts(""); } main(){ make(n);make(k); R(i,k)p[i] = i; kt = 0; do{ R(i,k){ if(p[i]==0){ mapp[daj_nr()] = kt; kt++; } if(p[i]==1){ break; } } }while(next_permutation(p,p+k)); //printf("%d\n",kt); R(j,k)R(i,n)make(t[i][j]); R(i,n){ int pom = kol(i); //printf("%d\n",pom); if(odw){ R(j,k)tr[pom][j] -= t[i][j]; }else{ R(j,k)tr[pom][j] += t[i][j]; } } //zmienne maja być dodatnie R(i,kt){ //R(j,k)printf("%lld ",tr[i][j]);puts(""); LL mi = *min_element(tr[i],tr[i]+k); R(j,k)tr[i][j] -= mi; if(DB){R(j,k)printf("%lld ",tr[i][j]);puts("");} } simplexuj(); calkowite(); if(DB){R(i,kt)printf("%lld ",odp[i]);puts("");} wyswietl(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | #include<cstdio> #include<algorithm> #include<vector> #include<set> #include<queue> #include<stack> #include<cmath> #include<map> using namespace std; typedef pair<int,int> PI; typedef long long LL; typedef double D; #define FI first #define SE second #define MP make_pair #define PB push_back #define R(I,N) for(int I=0;I<N;I++) #define F(I,A,B) for(int I=A;I<B;I++) #define FD(I,N) for(int I=N-1;I>=0;I--) #define make(A) scanf("%d",&A) #define MAX 100001 #define DB 0 #define db if(DB)printf int n,k,kt,t[MAX][5]; int gl,p[5]; inline int daj_nr(){ int wyn = 0; R(i,k){ wyn*=5; wyn+=p[i]; } return wyn; } bool qkol(int a,int b){ return t[gl][a] < t[gl][b]; } bool odw; int mapp[4000]; LL tr[61][5]; int kol(int nr){ gl = nr; R(i,k)p[i] = i; sort(p,p+k,qkol); odw = 0; R(i,k){ if(p[i]==0){ break; } if(p[i]==1){ odw=1; R(i,k/2)swap(p[i],p[k-i-1]); break; } } int wyn = 0; return mapp[daj_nr()]; } // Simplex z biblioteczki Marka Cygana typedef pair<int,int> PII; typedef vector<int> VI; #define MP make_pair #define FOR(v,p,k) for(int v=p;v<=k;++v) #define FORD(v,p,k) for(int v=p;v>=k;--v) #define REP(i,n) for(int i=0;i<(n);++i) #define VAR(v,i) __typeof(i) v=(i) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define PB push_back #define ST first #define ND second #define SIZE(x) (int)x.size() #define ALL(c) c.begin(),c.end() const double EPS = 1e-9; namespace Simplex{ /*jak chcemy zmienic typ, to zmieniamy typedef'a oraz wartosc EPS, na doublach tez powinno dzialac, ale troche szybciej i mniej dokladnie*/ #define EPS 1E-16 typedef long double T; typedef vector<T> VT; vector<VT> A; VT b,c,res; VI kt,N; int m; inline void pivot(int k,int l,int e){ int x=kt[l]; T p=A[l][e]; REP(i,k) A[l][i]/=p; b[l]/=p; N[e]=0; REP(i,m) if (i!=l) b[i]-=A[i][e]*b[l],A[i][x]=A[i][e]*-A[l][x]; REP(j,k) if (N[j]){ c[j]-=c[e]*A[l][j]; REP(i,m) if (i!=l) A[i][j]-=A[i][e]*A[l][j]; } kt[l]=e; N[x]=1; c[x]=c[e]*-A[l][x]; } /*k == #zmiennych bazowych + #zmiennych niebazowych*/ VT doit(int k){ VT res; T best; while (1){ int e=-1,l=-1; REP(i,k) if (N[i] && c[i]>EPS) {e=i; break;} if (e==-1) break; REP(i,m) if (A[i][e]>EPS && (l==-1 || best>b[i]/A[i][e])) best=b[ l=i ]/A[i][e]; if (l==-1) /*rozwiazanie nieograniczone,zwracam cokolwiek*/ return VT(); pivot(k,l,e); } res.resize(k,0); REP(i,m) res[kt[i]]=b[i]; return res; } /*A*x<=b, maksymalizujemy x*c (a[0][0]*x[0]+a[0][1]*x[1]+...<=b[0]), dla x>=0*/ /*jak chcemy zeby xj moglo byc ujemne to podstawiamy zamiast xj dwie nowe */ /*zmiene (xj1-xj2), gdzie xj1,xj2>=0, funkcja zwraca najlepszy wektor, jesli */ /*rozwiazanie nie istnieje, lub jest nieograniczone, to zwracany jest pusty */ /*wektor */ VT simplex(vector<VT> &AA,VT &bb,VT &cc){ int n=AA[0].size(),k; m=AA.size(); k=n+m+1; kt.resize(m); b=bb; c=cc; c.resize(n+m); A=AA; REP(i,m){ A[i].resize(k); A[i][n+i]=1; A[i][k-1]=-1; kt[i]=n+i;} N=VI(k,1); REP(i,m) N[kt[i]]=0; int pos=min_element(ALL(b))-b.begin(); if (b[pos]<-EPS){ /*uwaga na epsilony*/ c=VT(k,0); c[k-1]=-1; pivot(k,pos,k-1); res=doit(k); if (res[k-1]>EPS) /*brak rozwiazan*/ return VT(); REP(i,m) if (kt[i]==k-1) REP(j,k-1) if (N[j] && (A[i][j]<-EPS || EPS<A[i][j])){ pivot(k,i,j); break; } c=cc; c.resize(k,0); REP(i,m) REP(j,k) if (N[j]) c[j]-=c[kt[i]]*A[i][j]; } res=doit(k-1); if (!res.empty()) res.resize(n); return res; } }; //Begin of the code typedef long double T; typedef vector<T> VT; LL odp[61]; vector<int> nc; void simplexuj(){ int w = kt*(k+1) + 1; int h = 2*kt*k + k; vector<VT> A(h,VT(w)); VT b(h),c(w),res; c[w-1] = -1; int ak = 0; R(i,k){ F(j,(i+1)*kt,(i+2)*kt) A[ak][j] = 1; A[ak][w-1] = -1; ak++; } R(i,kt)R(j,k){ A[ak][i] = 1; A[ak][i+(j+1)*kt] = -1; b[ak] = tr[i][j]; ak++; A[ak][i] = -1; A[ak][i+(j+1)*kt] = -1; b[ak] = -tr[i][j]; ak++; } res=Simplex::simplex(A,b,c); R(i,kt){ odp[i] = res[i] + 0.05; //fprintf(stderr,"%.6Lf\n",res[i]); if(abs(odp[i] - res[i]) > 0.1)nc.PB(i); } //printf("najlepszy wektor: "); REP(i,/*SIZE(res)*/kt) printf("x%d = %.6Lf, ",i,res[i]); //printf("\n"); T acc=0; REP(i,SIZE(res)) acc+=res[i]*c[i]; //fprintf(stderr,"%.6Lf\n",-acc); } void calkowite(){ int ncs = nc.size(); LL naj = -1; int mb = -1; R(i,(1<<ncs)){ R(j,ncs)if(i&(1<<j))odp[nc[j]]+=1; LL odl = 0; R(jj,k){ LL wyn = 0; R(ii,kt)wyn += abs(tr[ii][jj] - odp[ii]); db("%lld\n",wyn); odl = max(odl,wyn); } db("\n"); if(naj == -1 || odl < naj){ naj = odl; mb = i; } R(j,ncs)if(i&(1<<j))odp[nc[j]]-=1; } R(j,ncs)if(mb&(1<<j))odp[nc[j]]+=1; } void wyswietl(){ R(i,n){ int pom = kol(i); if(odw)R(j,k)t[i][j] *= -1; int zm = -1; db("%lld\n",odp[pom]); R(jj,k){ int j = p[jj]; db("%lld %d\n",tr[pom][j],t[i][j]); if(tr[pom][j]<=odp[pom]) zm = jj; } db("(%d)",zm); LL ile; if(zm == k-1) ile = 0; else ile = min(odp[pom] - tr[pom][p[zm]], LL(t[i][p[zm+1]] - t[i][p[zm]])); db("ile: %lld\n",ile); odp[pom] -= ile; db("wyn:"); printf("%lld ",(odw?-1:1) * (t[i][p[zm]] + ile)); db("\n"); } puts(""); } main(){ make(n);make(k); R(i,k)p[i] = i; kt = 0; do{ R(i,k){ if(p[i]==0){ mapp[daj_nr()] = kt; kt++; } if(p[i]==1){ break; } } }while(next_permutation(p,p+k)); //printf("%d\n",kt); R(j,k)R(i,n)make(t[i][j]); R(i,n){ int pom = kol(i); //printf("%d\n",pom); if(odw){ R(j,k)tr[pom][j] -= t[i][j]; }else{ R(j,k)tr[pom][j] += t[i][j]; } } //zmienne maja być dodatnie R(i,kt){ //R(j,k)printf("%lld ",tr[i][j]);puts(""); LL mi = *min_element(tr[i],tr[i]+k); R(j,k)tr[i][j] -= mi; if(DB){R(j,k)printf("%lld ",tr[i][j]);puts("");} } simplexuj(); calkowite(); if(DB){R(i,kt)printf("%lld ",odp[i]);puts("");} wyswietl(); } |