1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
#define NDEBUG



// From http://www.superliminal.com/sources/RTreeTemplate.zip, with tweaks {{{

#ifndef RTREE_H
#define RTREE_H

// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.

// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <algorithm>

#define ASSERT assert // RTree uses ASSERT( condition )
#ifndef Min
  #define Min std::min
#endif //Min
#ifndef Max
  #define Max std::max
#endif //Max

//
// RTree.h
//

#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, TMINNODES>

#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems

// Fwd decl
class RTFileStream;  // File I/O helper class, look below for implementation and notes.


/// \class RTree
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
///
/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
/// ELEMTYPE Type of element such as int or float
/// NUMDIMS Number of dimensions such as 2 or 3
/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
///        This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
///        Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
///        array similar to MFC CArray or STL Vector for returning search query result.
///
template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
         class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:

  struct Node;  // Fwd decl.  Used by other internal structs and iterator

public:

  // These constant must be declared after Branch and before Node struct
  // Stuck up here for MSVC 6 compiler.  NSVC .NET 2003 is much happier.
  enum
  {
    MAXNODES = TMAXNODES,                         ///< Max elements in node
    MINNODES = TMINNODES,                         ///< Min elements in node
  };


public:

  RTree();
  virtual ~RTree();

  /// Insert entry
  /// \param a_min Min of bounding rect
  /// \param a_max Max of bounding rect
  /// \param a_dataId Positive Id of data.  Maybe zero, but negative numbers not allowed.
  void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);

  /// Remove entry
  /// \param a_min Min of bounding rect
  /// \param a_max Max of bounding rect
  /// \param a_dataId Positive Id of data.  Maybe zero, but negative numbers not allowed.
  void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);

  /// Find all within search rectangle
  /// \param a_min Min of search bounding rect
  /// \param a_max Max of search bounding rect
  /// \param a_searchResult Search result array.  Caller should set grow size. Function will reset, not append to array.
  /// \param a_resultCallback Callback function to return result.  Callback should return 'true' to continue searching
  /// \param a_context User context to pass as parameter to a_resultCallback
  /// \return Returns the number of entries found
  int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool (*a_resultCallback)(DATATYPE a_data, void* a_context), void* a_context);

  /// Remove all entries from tree
  void RemoveAll();

  /// Count the data elements in this container.  This is slow as no internal counter is maintained.
  int Count();

  /// Load tree contents from file
  bool Load(const char* a_fileName);
  /// Load tree contents from stream
  bool Load(RTFileStream& a_stream);


  /// Save tree contents to file
  bool Save(const char* a_fileName);
  /// Save tree contents to stream
  bool Save(RTFileStream& a_stream);

  /// Iterator is not remove safe.
  class Iterator
  {
  private:

    enum { MAX_STACK = 32 }; //  Max stack size. Allows almost n^32 where n is number of branches in node

    struct StackElement
    {
      Node* m_node;
      int m_branchIndex;
    };

  public:

    Iterator()                                    { Init(); }

    ~Iterator()                                   { }

    /// Is iterator invalid
    bool IsNull()                                 { return (m_tos <= 0); }

    /// Is iterator pointing to valid data
    bool IsNotNull()                              { return (m_tos > 0); }

    /// Access the current data element. Caller must be sure iterator is not NULL first.
    DATATYPE& operator*()
    {
      ASSERT(IsNotNull());
      StackElement& curTos = m_stack[m_tos - 1];
      return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
    }

    /// Access the current data element. Caller must be sure iterator is not NULL first.
    const DATATYPE& operator*() const
    {
      ASSERT(IsNotNull());
      StackElement& curTos = m_stack[m_tos - 1];
      return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
    }

    /// Find the next data element
    bool operator++()                             { return FindNextData(); }

    /// Get the bounds for this node
    void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
    {
      ASSERT(IsNotNull());
      StackElement& curTos = m_stack[m_tos - 1];
      Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];

      for(int index = 0; index < NUMDIMS; ++index)
      {
        a_min[index] = curBranch.m_rect.m_min[index];
        a_max[index] = curBranch.m_rect.m_max[index];
      }
    }

  private:

    /// Reset iterator
    void Init()                                   { m_tos = 0; }

    /// Find the next data element in the tree (For internal use only)
    bool FindNextData()
    {
      for(;;)
      {
        if(m_tos <= 0)
        {
          return false;
        }
        StackElement curTos = Pop(); // Copy stack top cause it may change as we use it

        if(curTos.m_node->IsLeaf())
        {
          // Keep walking through data while we can
          if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
          {
            // There is more data, just point to the next one
            Push(curTos.m_node, curTos.m_branchIndex + 1);
            return true;
          }
          // No more data, so it will fall back to previous level
        }
        else
        {
          if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
          {
            // Push sibling on for future tree walk
            // This is the 'fall back' node when we finish with the current level
            Push(curTos.m_node, curTos.m_branchIndex + 1);
          }
          // Since cur node is not a leaf, push first of next level to get deeper into the tree
          Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
          Push(nextLevelnode, 0);

          // If we pushed on a new leaf, exit as the data is ready at TOS
          if(nextLevelnode->IsLeaf())
          {
            return true;
          }
        }
      }
    }

    /// Push node and branch onto iteration stack (For internal use only)
    void Push(Node* a_node, int a_branchIndex)
    {
      m_stack[m_tos].m_node = a_node;
      m_stack[m_tos].m_branchIndex = a_branchIndex;
      ++m_tos;
      ASSERT(m_tos <= MAX_STACK);
    }

    /// Pop element off iteration stack (For internal use only)
    StackElement& Pop()
    {
      ASSERT(m_tos > 0);
      --m_tos;
      return m_stack[m_tos];
    }

    StackElement m_stack[MAX_STACK];              ///< Stack as we are doing iteration instead of recursion
    int m_tos;                                    ///< Top Of Stack index

    friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
  };

  /// Get 'first' for iteration
  void GetFirst(Iterator& a_it)
  {
    a_it.Init();
    Node* first = m_root;
    while(first)
    {
      if(first->IsInternalNode() && first->m_count > 1)
      {
        a_it.Push(first, 1); // Descend sibling branch later
      }
      else if(first->IsLeaf())
      {
        if(first->m_count)
        {
          a_it.Push(first, 0);
        }
        break;
      }
      first = first->m_branch[0].m_child;
    }
  }

  /// Get Next for iteration
  void GetNext(Iterator& a_it)                    { ++a_it; }

  /// Is iterator NULL, or at end?
  bool IsNull(Iterator& a_it)                     { return a_it.IsNull(); }

  /// Get object at iterator position
  DATATYPE& GetAt(Iterator& a_it)                 { return *a_it; }

protected:

  /// Minimal bounding rectangle (n-dimensional)
  struct Rect
  {
    ELEMTYPE m_min[NUMDIMS];                      ///< Min dimensions of bounding box
    ELEMTYPE m_max[NUMDIMS];                      ///< Max dimensions of bounding box
  };

  /// May be data or may be another subtree
  /// The parents level determines this.
  /// If the parents level is 0, then this is data
  struct Branch
  {
    Rect m_rect;                                  ///< Bounds
    union
    {
      Node* m_child;                              ///< Child node
      DATATYPE m_data;                            ///< Data Id or Ptr
    };
  };

  /// Node for each branch level
  struct Node
  {
    bool IsInternalNode()                         { return (m_level > 0); } // Not a leaf, but a internal node
    bool IsLeaf()                                 { return (m_level == 0); } // A leaf, contains data

    int m_count;                                  ///< Count
    int m_level;                                  ///< Leaf is zero, others positive
    Branch m_branch[MAXNODES];                    ///< Branch
  };

  /// A link list of nodes for reinsertion after a delete operation
  struct ListNode
  {
    ListNode* m_next;                             ///< Next in list
    Node* m_node;                                 ///< Node
  };

  /// Variables for finding a split partition
  struct PartitionVars
  {
    int m_partition[MAXNODES+1];
    int m_total;
    int m_minFill;
    int m_taken[MAXNODES+1];
    int m_count[2];
    Rect m_cover[2];
    ELEMTYPEREAL m_area[2];

    Branch m_branchBuf[MAXNODES+1];
    int m_branchCount;
    Rect m_coverSplit;
    ELEMTYPEREAL m_coverSplitArea;
  };

  Node* AllocNode();
  void FreeNode(Node* a_node);
  void InitNode(Node* a_node);
  void InitRect(Rect* a_rect);
  bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level);
  bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level);
  Rect NodeCover(Node* a_node);
  bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
  void DisconnectBranch(Node* a_node, int a_index);
  int PickBranch(Rect* a_rect, Node* a_node);
  Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
  void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
  ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
  ELEMTYPEREAL RectVolume(Rect* a_rect);
  ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
  void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
  void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
  void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
  void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
  void PickSeeds(PartitionVars* a_parVars);
  void Classify(int a_index, int a_group, PartitionVars* a_parVars);
  bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
  bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode);
  ListNode* AllocListNode();
  void FreeListNode(ListNode* a_listNode);
  bool Overlap(Rect* a_rectA, Rect* a_rectB);
  void ReInsert(Node* a_node, ListNode** a_listNode);
  bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool (*a_resultCallback)(DATATYPE a_data, void* a_context), void* a_context);
  void RemoveAllRec(Node* a_node);
  void Reset();
  void CountRec(Node* a_node, int& a_count);

  bool SaveRec(Node* a_node, RTFileStream& a_stream);
  bool LoadRec(Node* a_node, RTFileStream& a_stream);

  Node* m_root;                                    ///< Root of tree
  ELEMTYPEREAL m_unitSphereVolume;                 ///< Unit sphere constant for required number of dimensions
};


// Because there is not stream support, this is a quick and dirty file I/O helper.
// Users will likely replace its usage with a Stream implementation from their favorite API.
class RTFileStream
{
  FILE* m_file;

public:


  RTFileStream()
  {
    m_file = NULL;
  }

  ~RTFileStream()
  {
    Close();
  }

  bool OpenRead(const char* a_fileName)
  {
    m_file = fopen(a_fileName, "rb");
    if(!m_file)
    {
      return false;
    }
    return true;
  }

  bool OpenWrite(const char* a_fileName)
  {
    m_file = fopen(a_fileName, "wb");
    if(!m_file)
    {
      return false;
    }
    return true;
  }

  void Close()
  {
    if(m_file)
    {
      fclose(m_file);
      m_file = NULL;
    }
  }

  template< typename TYPE >
  size_t Write(const TYPE& a_value)
  {
    ASSERT(m_file);
    return fwrite((void*)&a_value, sizeof(a_value), 1, m_file);
  }

  template< typename TYPE >
  size_t WriteArray(const TYPE* a_array, int a_count)
  {
    ASSERT(m_file);
    return fwrite((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
  }

  template< typename TYPE >
  size_t Read(TYPE& a_value)
  {
    ASSERT(m_file);
    return fread((void*)&a_value, sizeof(a_value), 1, m_file);
  }

  template< typename TYPE >
  size_t ReadArray(TYPE* a_array, int a_count)
  {
    ASSERT(m_file);
    return fread((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
  }
};


RTREE_TEMPLATE
RTREE_QUAL::RTree()
{
  ASSERT(MAXNODES > MINNODES);
  ASSERT(MINNODES > 0);


  // We only support machine word size simple data type eg. integer index or object pointer.
  // Since we are storing as union with non data branch
  ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));

  // Precomputed volumes of the unit spheres for the first few dimensions
  const float UNIT_SPHERE_VOLUMES[] = {
    0.000000f, 2.000000f, 3.141593f, // Dimension  0,1,2
    4.188790f, 4.934802f, 5.263789f, // Dimension  3,4,5
    5.167713f, 4.724766f, 4.058712f, // Dimension  6,7,8
    3.298509f, 2.550164f, 1.884104f, // Dimension  9,10,11
    1.335263f, 0.910629f, 0.599265f, // Dimension  12,13,14
    0.381443f, 0.235331f, 0.140981f, // Dimension  15,16,17
    0.082146f, 0.046622f, 0.025807f, // Dimension  18,19,20
  };

  m_root = AllocNode();
  m_root->m_level = 0;
  m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
}


RTREE_TEMPLATE
RTREE_QUAL::~RTree()
{
  Reset(); // Free, or reset node memory
}


RTREE_TEMPLATE
void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifdef _DEBUG
  for(int index=0; index<NUMDIMS; ++index)
  {
    ASSERT(a_min[index] <= a_max[index]);
  }
#endif //_DEBUG

  Rect rect;

  for(int axis=0; axis<NUMDIMS; ++axis)
  {
    rect.m_min[axis] = a_min[axis];
    rect.m_max[axis] = a_max[axis];
  }

  InsertRect(&rect, a_dataId, &m_root, 0);
}


RTREE_TEMPLATE
void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifdef _DEBUG
  for(int index=0; index<NUMDIMS; ++index)
  {
    ASSERT(a_min[index] <= a_max[index]);
  }
#endif //_DEBUG

  Rect rect;

  for(int axis=0; axis<NUMDIMS; ++axis)
  {
    rect.m_min[axis] = a_min[axis];
    rect.m_max[axis] = a_max[axis];
  }

  RemoveRect(&rect, a_dataId, &m_root);
}


RTREE_TEMPLATE
int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool (*a_resultCallback)(DATATYPE a_data, void* a_context), void* a_context)
{
#ifdef _DEBUG
  for(int index=0; index<NUMDIMS; ++index)
  {
    ASSERT(a_min[index] <= a_max[index]);
  }
#endif //_DEBUG

  Rect rect;

  for(int axis=0; axis<NUMDIMS; ++axis)
  {
    rect.m_min[axis] = a_min[axis];
    rect.m_max[axis] = a_max[axis];
  }

  // NOTE: May want to return search result another way, perhaps returning the number of found elements here.

  int foundCount = 0;
  Search(m_root, &rect, foundCount, a_resultCallback, a_context);

  return foundCount;
}


RTREE_TEMPLATE
int RTREE_QUAL::Count()
{
  int count = 0;
  CountRec(m_root, count);

  return count;
}



RTREE_TEMPLATE
void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
{
  if(a_node->IsInternalNode())  // not a leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      CountRec(a_node->m_branch[index].m_child, a_count);
    }
  }
  else // A leaf node
  {
    a_count += a_node->m_count;
  }
}


RTREE_TEMPLATE
bool RTREE_QUAL::Load(const char* a_fileName)
{
  RemoveAll(); // Clear existing tree

  RTFileStream stream;
  if(!stream.OpenRead(a_fileName))
  {
    return false;
  }

  bool result = Load(stream);

  stream.Close();

  return result;
};



RTREE_TEMPLATE
bool RTREE_QUAL::Load(RTFileStream& a_stream)
{
  // Write some kind of header
  int _dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
  int _dataSize = sizeof(DATATYPE);
  int _dataNumDims = NUMDIMS;
  int _dataElemSize = sizeof(ELEMTYPE);
  int _dataElemRealSize = sizeof(ELEMTYPEREAL);
  int _dataMaxNodes = TMAXNODES;
  int _dataMinNodes = TMINNODES;

  int dataFileId = 0;
  int dataSize = 0;
  int dataNumDims = 0;
  int dataElemSize = 0;
  int dataElemRealSize = 0;
  int dataMaxNodes = 0;
  int dataMinNodes = 0;

  a_stream.Read(dataFileId);
  a_stream.Read(dataSize);
  a_stream.Read(dataNumDims);
  a_stream.Read(dataElemSize);
  a_stream.Read(dataElemRealSize);
  a_stream.Read(dataMaxNodes);
  a_stream.Read(dataMinNodes);

  bool result = false;

  // Test if header was valid and compatible
  if(    (dataFileId == _dataFileId)
      && (dataSize == _dataSize)
      && (dataNumDims == _dataNumDims)
      && (dataElemSize == _dataElemSize)
      && (dataElemRealSize == _dataElemRealSize)
      && (dataMaxNodes == _dataMaxNodes)
      && (dataMinNodes == _dataMinNodes)
    )
  {
    // Recursively load tree
    result = LoadRec(m_root, a_stream);
  }

  return result;
}


RTREE_TEMPLATE
bool RTREE_QUAL::LoadRec(Node* a_node, RTFileStream& a_stream)
{
  a_stream.Read(a_node->m_level);
  a_stream.Read(a_node->m_count);

  if(a_node->IsInternalNode())  // not a leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      Branch* curBranch = &a_node->m_branch[index];

      a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
      a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);

      curBranch->m_child = AllocNode();
      LoadRec(curBranch->m_child, a_stream);
    }
  }
  else // A leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      Branch* curBranch = &a_node->m_branch[index];

      a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
      a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);

      a_stream.Read(curBranch->m_data);
    }
  }

  return true; // Should do more error checking on I/O operations
}


RTREE_TEMPLATE
bool RTREE_QUAL::Save(const char* a_fileName)
{
  RTFileStream stream;
  if(!stream.OpenWrite(a_fileName))
  {
    return false;
  }

  bool result = Save(stream);

  stream.Close();

  return result;
}


RTREE_TEMPLATE
bool RTREE_QUAL::Save(RTFileStream& a_stream)
{
  // Write some kind of header
  int dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
  int dataSize = sizeof(DATATYPE);
  int dataNumDims = NUMDIMS;
  int dataElemSize = sizeof(ELEMTYPE);
  int dataElemRealSize = sizeof(ELEMTYPEREAL);
  int dataMaxNodes = TMAXNODES;
  int dataMinNodes = TMINNODES;

  a_stream.Write(dataFileId);
  a_stream.Write(dataSize);
  a_stream.Write(dataNumDims);
  a_stream.Write(dataElemSize);
  a_stream.Write(dataElemRealSize);
  a_stream.Write(dataMaxNodes);
  a_stream.Write(dataMinNodes);

  // Recursively save tree
  bool result = SaveRec(m_root, a_stream);

  return result;
}


RTREE_TEMPLATE
bool RTREE_QUAL::SaveRec(Node* a_node, RTFileStream& a_stream)
{
  a_stream.Write(a_node->m_level);
  a_stream.Write(a_node->m_count);

  if(a_node->IsInternalNode())  // not a leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      Branch* curBranch = &a_node->m_branch[index];

      a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
      a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);

      SaveRec(curBranch->m_child, a_stream);
    }
  }
  else // A leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      Branch* curBranch = &a_node->m_branch[index];

      a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
      a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);

      a_stream.Write(curBranch->m_data);
    }
  }

  return true; // Should do more error checking on I/O operations
}


RTREE_TEMPLATE
void RTREE_QUAL::RemoveAll()
{
  // Delete all existing nodes
  Reset();

  m_root = AllocNode();
  m_root->m_level = 0;
}


RTREE_TEMPLATE
void RTREE_QUAL::Reset()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
  // Delete all existing nodes
  RemoveAllRec(m_root);
#else // RTREE_DONT_USE_MEMPOOLS
  // Just reset memory pools.  We are not using complex types
  // EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}


RTREE_TEMPLATE
void RTREE_QUAL::RemoveAllRec(Node* a_node)
{
  ASSERT(a_node);
  ASSERT(a_node->m_level >= 0);

  if(a_node->IsInternalNode()) // This is an internal node in the tree
  {
    for(int index=0; index < a_node->m_count; ++index)
    {
      RemoveAllRec(a_node->m_branch[index].m_child);
    }
  }
  FreeNode(a_node);
}


RTREE_TEMPLATE
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
{
  Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
  newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
  // EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
  InitNode(newNode);
  return newNode;
}


RTREE_TEMPLATE
void RTREE_QUAL::FreeNode(Node* a_node)
{
  ASSERT(a_node);

#ifdef RTREE_DONT_USE_MEMPOOLS
  delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
  // EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}


// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
RTREE_TEMPLATE
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
  return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
  // EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}


RTREE_TEMPLATE
void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
{
#ifdef RTREE_DONT_USE_MEMPOOLS
  delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
  // EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}


RTREE_TEMPLATE
void RTREE_QUAL::InitNode(Node* a_node)
{
  a_node->m_count = 0;
  a_node->m_level = -1;
}


RTREE_TEMPLATE
void RTREE_QUAL::InitRect(Rect* a_rect)
{
  for(int index = 0; index < NUMDIMS; ++index)
  {
    a_rect->m_min[index] = (ELEMTYPE)0;
    a_rect->m_max[index] = (ELEMTYPE)0;
  }
}


// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split.  Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node.  Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level)
{
  ASSERT(a_rect && a_node && a_newNode);
  ASSERT(a_level >= 0 && a_level <= a_node->m_level);

  int index;
  Branch branch;
  Node* otherNode;

  // Still above level for insertion, go down tree recursively
  if(a_node->m_level > a_level)
  {
    index = PickBranch(a_rect, a_node);
    if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level))
    {
      // Child was not split
      a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
      return false;
    }
    else // Child was split
    {
      a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
      branch.m_child = otherNode;
      branch.m_rect = NodeCover(otherNode);
      return AddBranch(&branch, a_node, a_newNode);
    }
  }
  else if(a_node->m_level == a_level) // Have reached level for insertion. Add rect, split if necessary
  {
    branch.m_rect = *a_rect;
    branch.m_child = (Node*) a_id;
    // Child field of leaves contains id of data record
    return AddBranch(&branch, a_node, a_newNode);
  }
  else
  {
    // Should never occur
    ASSERT(0);
    return false;
  }
}


// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
//
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level)
{
  ASSERT(a_rect && a_root);
  ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
#ifdef _DEBUG
  for(int index=0; index < NUMDIMS; ++index)
  {
    ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
  }
#endif //_DEBUG

  Node* newRoot;
  Node* newNode;
  Branch branch;

  if(InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level))  // Root split
  {
    newRoot = AllocNode();  // Grow tree taller and new root
    newRoot->m_level = (*a_root)->m_level + 1;
    branch.m_rect = NodeCover(*a_root);
    branch.m_child = *a_root;
    AddBranch(&branch, newRoot, NULL);
    branch.m_rect = NodeCover(newNode);
    branch.m_child = newNode;
    AddBranch(&branch, newRoot, NULL);
    *a_root = newRoot;
    return true;
  }

  return false;
}


// Find the smallest rectangle that includes all rectangles in branches of a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
{
  ASSERT(a_node);

  int firstTime = true;
  Rect rect;
  InitRect(&rect);

  for(int index = 0; index < a_node->m_count; ++index)
  {
    if(firstTime)
    {
      rect = a_node->m_branch[index].m_rect;
      firstTime = false;
    }
    else
    {
      rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
    }
  }

  return rect;
}


// Add a branch to a node.  Split the node if necessary.
// Returns 0 if node not split.  Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
{
  ASSERT(a_branch);
  ASSERT(a_node);

  if(a_node->m_count < MAXNODES)  // Split won't be necessary
  {
    a_node->m_branch[a_node->m_count] = *a_branch;
    ++a_node->m_count;

    return false;
  }
  else
  {
    ASSERT(a_newNode);

    SplitNode(a_node, a_branch, a_newNode);
    return true;
  }
}


// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
{
  ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
  ASSERT(a_node->m_count > 0);

  // Remove element by swapping with the last element to prevent gaps in array
  a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];

  --a_node->m_count;
}


// Pick a branch.  Pick the one that will need the smallest increase
// in area to accomodate the new rectangle.  This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
{
  ASSERT(a_rect && a_node);

  bool firstTime = true;
  ELEMTYPEREAL increase;
  ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
  ELEMTYPEREAL area;
  ELEMTYPEREAL bestArea;
  int best;
  Rect tempRect;

  for(int index=0; index < a_node->m_count; ++index)
  {
    Rect* curRect = &a_node->m_branch[index].m_rect;
    area = CalcRectVolume(curRect);
    tempRect = CombineRect(a_rect, curRect);
    increase = CalcRectVolume(&tempRect) - area;
    if((increase < bestIncr) || firstTime)
    {
      best = index;
      bestArea = area;
      bestIncr = increase;
      firstTime = false;
    }
    else if((increase == bestIncr) && (area < bestArea))
    {
      best = index;
      bestArea = area;
      bestIncr = increase;
    }
  }
  return best;
}


// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
{
  ASSERT(a_rectA && a_rectB);

  Rect newRect;

  for(int index = 0; index < NUMDIMS; ++index)
  {
    newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]);
    newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]);
  }

  return newRect;
}



// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
{
  ASSERT(a_node);
  ASSERT(a_branch);

  // Could just use local here, but member or external is faster since it is reused
  PartitionVars localVars;
  PartitionVars* parVars = &localVars;
  int level;

  // Load all the branches into a buffer, initialize old node
  level = a_node->m_level;
  GetBranches(a_node, a_branch, parVars);

  // Find partition
  ChoosePartition(parVars, MINNODES);

  // Put branches from buffer into 2 nodes according to chosen partition
  *a_newNode = AllocNode();
  (*a_newNode)->m_level = a_node->m_level = level;
  LoadNodes(a_node, *a_newNode, parVars);

  ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
}


// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
{
  ASSERT(a_rect);

  ELEMTYPEREAL volume = (ELEMTYPEREAL)1;

  for(int index=0; index<NUMDIMS; ++index)
  {
    volume *= a_rect->m_max[index] - a_rect->m_min[index];
  }

  ASSERT(volume >= (ELEMTYPEREAL)0);

  return volume;
}


// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
{
  ASSERT(a_rect);

  ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
  ELEMTYPEREAL radius;

  for(int index=0; index < NUMDIMS; ++index)
  {
    ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
    sumOfSquares += halfExtent * halfExtent;
  }

  radius = (ELEMTYPEREAL)sqrt(sumOfSquares);

  // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
  if(NUMDIMS == 3)
  {
    return (radius * radius * radius * m_unitSphereVolume);
  }
  else if(NUMDIMS == 2)
  {
    return (radius * radius * m_unitSphereVolume);
  }
  else
  {
    return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
  }
}


// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
  return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
  return RectVolume(a_rect); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}


// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars)
{
  ASSERT(a_node);
  ASSERT(a_branch);

  ASSERT(a_node->m_count == MAXNODES);

  // Load the branch buffer
  for(int index=0; index < MAXNODES; ++index)
  {
    a_parVars->m_branchBuf[index] = a_node->m_branch[index];
  }
  a_parVars->m_branchBuf[MAXNODES] = *a_branch;
  a_parVars->m_branchCount = MAXNODES + 1;

  // Calculate rect containing all in the set
  a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
  for(int index=1; index < MAXNODES+1; ++index)
  {
    a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect);
  }
  a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);

  InitNode(a_node);
}


// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
{
  ASSERT(a_parVars);

  ELEMTYPEREAL biggestDiff;
  int group, chosen, betterGroup;

  InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
  PickSeeds(a_parVars);

  while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
       && (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
       && (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill)))
  {
    biggestDiff = (ELEMTYPEREAL) -1;
    for(int index=0; index<a_parVars->m_total; ++index)
    {
      if(!a_parVars->m_taken[index])
      {
        Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
        Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
        Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
        ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
        ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
        ELEMTYPEREAL diff = growth1 - growth0;
        if(diff >= 0)
        {
          group = 0;
        }
        else
        {
          group = 1;
          diff = -diff;
        }

        if(diff > biggestDiff)
        {
          biggestDiff = diff;
          chosen = index;
          betterGroup = group;
        }
        else if((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]))
        {
          chosen = index;
          betterGroup = group;
        }
      }
    }
    Classify(chosen, betterGroup, a_parVars);
  }

  // If one group too full, put remaining rects in the other
  if((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
  {
    if(a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
    {
      group = 1;
    }
    else
    {
      group = 0;
    }
    for(int index=0; index<a_parVars->m_total; ++index)
    {
      if(!a_parVars->m_taken[index])
      {
        Classify(index, group, a_parVars);
      }
    }
  }

  ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
  ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
        (a_parVars->m_count[1] >= a_parVars->m_minFill));
}


// Copy branches from the buffer into two nodes according to the partition.
RTREE_TEMPLATE
void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
{
  ASSERT(a_nodeA);
  ASSERT(a_nodeB);
  ASSERT(a_parVars);

  for(int index=0; index < a_parVars->m_total; ++index)
  {
    ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);

    if(a_parVars->m_partition[index] == 0)
    {
      AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
    }
    else if(a_parVars->m_partition[index] == 1)
    {
      AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
    }
  }
}


// Initialize a PartitionVars structure.
RTREE_TEMPLATE
void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill)
{
  ASSERT(a_parVars);

  a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
  a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
  a_parVars->m_total = a_maxRects;
  a_parVars->m_minFill = a_minFill;
  for(int index=0; index < a_maxRects; ++index)
  {
    a_parVars->m_taken[index] = false;
    a_parVars->m_partition[index] = -1;
  }
}


RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
{
  int seed0, seed1;
  ELEMTYPEREAL worst, waste;
  ELEMTYPEREAL area[MAXNODES+1];

  for(int index=0; index<a_parVars->m_total; ++index)
  {
    area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
  }

  worst = -a_parVars->m_coverSplitArea - 1;
  for(int indexA=0; indexA < a_parVars->m_total-1; ++indexA)
  {
    for(int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB)
    {
      Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
      waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
      if(waste > worst)
      {
        worst = waste;
        seed0 = indexA;
        seed1 = indexB;
      }
    }
  }
  Classify(seed0, 0, a_parVars);
  Classify(seed1, 1, a_parVars);
}


// Put a branch in one of the groups.
RTREE_TEMPLATE
void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
{
  ASSERT(a_parVars);
  ASSERT(!a_parVars->m_taken[a_index]);

  a_parVars->m_partition[a_index] = a_group;
  a_parVars->m_taken[a_index] = true;

  if (a_parVars->m_count[a_group] == 0)
  {
    a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
  }
  else
  {
    a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
  }
  a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
  ++a_parVars->m_count[a_group];
}


// Delete a data rectangle from an index structure.
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
// Returns 1 if record not found, 0 if success.
// RemoveRect provides for eliminating the root.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root)
{
  ASSERT(a_rect && a_root);
  ASSERT(*a_root);

  Node* tempNode;
  ListNode* reInsertList = NULL;

  if(!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList))
  {
    // Found and deleted a data item
    // Reinsert any branches from eliminated nodes
    while(reInsertList)
    {
      tempNode = reInsertList->m_node;

      for(int index = 0; index < tempNode->m_count; ++index)
      {
        InsertRect(&(tempNode->m_branch[index].m_rect),
                   tempNode->m_branch[index].m_data,
                   a_root,
                   tempNode->m_level);
      }

      ListNode* remLNode = reInsertList;
      reInsertList = reInsertList->m_next;

      FreeNode(remLNode->m_node);
      FreeListNode(remLNode);
    }

    // Check for redundant root (not leaf, 1 child) and eliminate
    if((*a_root)->m_count == 1 && (*a_root)->IsInternalNode())
    {
      tempNode = (*a_root)->m_branch[0].m_child;

      ASSERT(tempNode);
      FreeNode(*a_root);
      *a_root = tempNode;
    }
    return false;
  }
  else
  {
    return true;
  }
}


// Delete a rectangle from non-root part of an index structure.
// Called by RemoveRect.  Descends tree recursively,
// merges branches on the way back up.
// Returns 1 if record not found, 0 if success.
RTREE_TEMPLATE
bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode)
{
  ASSERT(a_rect && a_node && a_listNode);
  ASSERT(a_node->m_level >= 0);

  if(a_node->IsInternalNode())  // not a leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      if(Overlap(a_rect, &(a_node->m_branch[index].m_rect)))
      {
        if(!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode))
        {
          if(a_node->m_branch[index].m_child->m_count >= MINNODES)
          {
            // child removed, just resize parent rect
            a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
          }
          else
          {
            // child removed, not enough entries in node, eliminate node
            ReInsert(a_node->m_branch[index].m_child, a_listNode);
            DisconnectBranch(a_node, index); // Must return after this call as count has changed
          }
          return false;
        }
      }
    }
    return true;
  }
  else // A leaf node
  {
    for(int index = 0; index < a_node->m_count; ++index)
    {
      if(a_node->m_branch[index].m_child == (Node*)a_id)
      {
        DisconnectBranch(a_node, index); // Must return after this call as count has changed
        return false;
      }
    }
    return true;
  }
}


// Decide whether two rectangles overlap.
RTREE_TEMPLATE
bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB)
{
  ASSERT(a_rectA && a_rectB);

  for(int index=0; index < NUMDIMS; ++index)
  {
    if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
        a_rectB->m_min[index] > a_rectA->m_max[index])
    {
      return false;
    }
  }
  return true;
}


// Add a node to the reinsertion list.  All its branches will later
// be reinserted into the index structure.
RTREE_TEMPLATE
void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode)
{
  ListNode* newListNode;

  newListNode = AllocListNode();
  newListNode->m_node = a_node;
  newListNode->m_next = *a_listNode;
  *a_listNode = newListNode;
}


// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
RTREE_TEMPLATE
bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool (*a_resultCallback)(DATATYPE a_data, void* a_context), void* a_context)
{
  ASSERT(a_node);
  ASSERT(a_node->m_level >= 0);
  ASSERT(a_rect);

  if(a_node->IsInternalNode()) // This is an internal node in the tree
  {
    for(int index=0; index < a_node->m_count; ++index)
    {
      if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
      {
        if(!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context))
        {
          return false; // Don't continue searching
        }
      }
    }
  }
  else // This is a leaf node
  {
    for(int index=0; index < a_node->m_count; ++index)
    {
      if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
      {
        DATATYPE& id = a_node->m_branch[index].m_data;

        // NOTE: There are different ways to return results.  Here's where to modify
        if(a_resultCallback)
        {
          ++a_foundCount;
          if(!a_resultCallback(id, a_context))
          {
            return false; // Don't continue searching
          }
        }
      }
    }
  }

  return true; // Continue searching
}


#undef RTREE_TEMPLATE
#undef RTREE_QUAL

#endif //RTREE_H

// }}} From http://www.superliminal.com/sources/RTreeTemplate.zip, with tweaks



#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <limits>
#include <climits>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <cassert>

const long long LLMAX = (std::numeric_limits<long long>()).max();
const long long LLMIN = (std::numeric_limits<long long>()).min();

const int nMax = 100000;
int n;

const int CoordMax = 1000000;

struct Ple {
    int x1, x2, y1, y2;

    void init(int x1, int x2, int y1, int y2) {
        this->x1 = x1;
        this->x2 = x2;
        this->y1 = y1;
        this->y2 = y2;
    }

    static bool lex(const Ple* a, const Ple* b)
    {
        return
            (a->x1 != b->x1) ? a->x1 < b->x1 :
            (a->x2 != b->x2) ? a->x2 < b->x2 :
            (a->y1 != b->y1) ? a->y1 < b->y1 :
                               a->y2 < b->y2;
    }
};
Ple plesBuf[nMax];

struct MinMax {
    int min[2];
    int max[2];


    void init(int x1, int x2, int y1, int y2) {
        this->min[0] = x1;
        this->min[1] = y1;
        this->max[0] = x2;
        this->max[1] = y2;
    }

    void init(const Ple& ple) {
        this->min[0] = ple.x1;
        this->min[1] = ple.y1;
        this->max[0] = ple.x2;
        this->max[1] = ple.y2;
    }
};

struct SearchContext {
    int x11; bool x1Adj;
    int y11; bool y1Adj;

    void init(int x11, bool x1Adj, int y11, bool y1Adj) {
        this->x11 = x11;
        this->x1Adj = x1Adj;
        this->y11 = y11;
        this->y1Adj = y1Adj;
    }
};

Ple* searchResults[nMax];
int searchResultsLen;
bool searchCallbackLoop(Ple* ple, void* voidCtx)
{
    SearchContext& ctx = *(SearchContext *)voidCtx;
    if (
        (ctx.x1Adj || ple->x2 != ctx.x11)
        && (ctx.y1Adj || ple->y2 != ctx.y11)
    ) {
        searchResults[searchResultsLen] = ple;
        ++searchResultsLen;
    }
    return true;
}
bool searchCallbackFinal(Ple* ple, void* unused)
{
    searchResults[searchResultsLen] = ple;
    ++searchResultsLen;
    return true;
}

int main()
{
    std::ios_base::sync_with_stdio(false);

    RTree<Ple*, int, 2, float> tree;
    MinMax minMax;
    SearchContext searchCtx;

    scanf("%d", &n);
    for (int i=0; i < n; ++i) {
        int x1, x2, y1, y2; scanf("%d %d %d %d", &x1, &x2, &y1, &y2);

        do {
            int x11 = x1; bool x1Adj = false; if (x11 + 1 < x2) { ++x11; x1Adj = true; }
            int y11 = y1; bool y1Adj = false; if (y11 + 1 < y2) { ++y11; y1Adj = true; }
            minMax.init(x11, x2 - 1, y11, y2 - 1);
            searchCtx.init(x11, x1Adj, y11, y1Adj);
            searchResultsLen = 0;
            tree.Search(minMax.min, minMax.max, searchCallbackLoop, &searchCtx);
            for (int j=0; j < searchResultsLen; ++j) {
                Ple& foundPle = *searchResults[j];

                if (x1 > foundPle.x1) {
                    x1 = foundPle.x1;
                }
                if (x2 < foundPle.x2) {
                    x2 = foundPle.x2;
                }
                if (y1 > foundPle.y1) {
                    y1 = foundPle.y1;
                }
                if (y2 < foundPle.y2) {
                    y2 = foundPle.y2;
                }

                minMax.init(foundPle);
                tree.Remove(minMax.min, minMax.max, &foundPle);
            }
        } while (searchResultsLen != 0);

        Ple& ple = plesBuf[i];
        ple.init(x1, x2, y1, y2);
        minMax.init(ple);
        tree.Insert(minMax.min, minMax.max, &ple);
    }

    minMax.init(0, CoordMax, 0, CoordMax);
    searchResultsLen = 0;
    tree.Search(minMax.min, minMax.max, searchCallbackFinal, NULL);
    std::sort(searchResults, searchResults + searchResultsLen, Ple::lex);
    printf("%d\n", searchResultsLen);
    for (int i=0; i < searchResultsLen; ++i) {
        Ple& foundPle = *searchResults[i];
        printf("%d %d %d %d\n", foundPle.x1, foundPle.x2, foundPle.y1, foundPle.y2);
    }
}