#include <stdio.h> #include <algorithm> #include <vector> #include <set> #include <map> using namespace std; typedef pair<int,int> PII; const int MaxN = 100005, Infty = 1010101010, CodeOK = -1337; struct Rectangle { int x1, y1, x2, y2; Rectangle() {} Rectangle(int _x1, int _x2, int _y1, int _y2) : x1(_x1), y1(_y1), x2(_x2), y2(_y2) {} Rectangle(FILE *fp){ fscanf(fp, "%d%d%d%d", &x1, &x2, &y1, &y2); } Rectangle operator|(const Rectangle R) const { return Rectangle(min(x1, R.x1), max(x2, R.x2), min(y1, R.y1), max(y2, R.y2)); } Rectangle& operator|=(const Rectangle R){ x1 = min(x1, R.x1); y1 = min(y1, R.y1); x2 = max(x2, R.x2); y2 = max(y2, R.y2); return *this; } bool operator<(const Rectangle R) const { if(x1 == R.x1){ if(x2 == R.x2){ return y1 < R.y1; } else return x2 < R.x2; } else return x1 < R.x1; } void output(){ printf("%d %d %d %d\n", x1, x2, y1, y2); } }; bool compare_ld(const Rectangle &R1, const Rectangle &R2){ if(R1.x1 == R2.x1) return R1.y1 < R2.y1; else return R1.x1 < R2.x1; } int N; Rectangle R[MaxN]; bool exists[MaxN]; void input(){ scanf("%d", &N); for(int i = 0; i < N; i++) R[i] = Rectangle(stdin); fill(exists, exists+N+1, true); } /************************ DRZEWO PRZEDZIALOWE *************************/ /** (wariacja na temat; pozwala na wrzucanie i usuwanie przedzialow * oraz znajdowanie max na przedziale **/ struct SegTree { static const int MaxSize = (1<<21), Base = (1<<20); // A - liczby na przedziale bazowym; B - max na dzieciach // P - numer liczby maksymalnej set<PII> A[MaxSize]; PII B[MaxSize]; SegTree(){ fill(B, B+MaxSize, PII(CodeOK, CodeOK)); } PII get_last(int num){ if(A[num].size()) return *A[num].rbegin(); else return {CodeOK, CodeOK}; } // dodaj przedzial [L,R] o wartosci v; bedzie to najwieksza dotad // wartosc na tym przedziale // num - numer tej liczby (czyli potem - prostokata) void add(int L, int R, int v, int num){ L += Base; R += Base; A[L].insert({v,num}); B[L] = max(B[L],PII(v, num)); if(L != R){ A[R].insert({v,num}); B[R] = max(B[R],PII(v, num)); } while(L/2 != R/2){ if(L % 2 == 0){ A[L+1].insert({v,num}); B[L+1] = max(B[L+1],PII(v, num)); } if(R % 2 == 1){ A[R-1].insert({v,num}); B[R-1] = max(B[R-1],PII(v, num)); } L /= 2; R /= 2; B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); B[R] = max(get_last(R), max(B[2*R], B[2*R+1])); } L /= 2; while(L){ B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); L /= 2; } } // usun przedzial [L,R] (o wartosci v, numerze num); wiadomo, ze to // najwieksza wartosc na tym przedziale void del(int L, int R, int v, int num){ L += Base; R += Base; A[L].erase({v,num}); B[L] = get_last(L); if(L != R){ A[R].erase({v,num}); B[R] = get_last(R); } while(L/2 != R/2){ if(L % 2 == 0){ A[L+1].erase({v,num}); B[L+1] = get_last(L+1); if(L < Base){ B[L+1] = max(B[L+1], max(B[2*(L+1)], B[2*(L+1)+1])); } } if(R % 2 == 1){ A[R-1].erase({v,num}); B[R-1] = get_last(R-1); if(R < Base){ B[R-1] = max(B[R-1], max(B[2*(R-1)], B[2*(R-1)+1])); } } L /= 2; R /= 2; B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); B[R] = max(get_last(R), max(B[2*R], B[2*R+1])); } L /= 2; while(L){ B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); L /= 2; } } // uzyskaj maksimum na przedziale [L,R] PII get_max(int L, int R){ L += Base; R += Base; PII res = max(get_last(L), get_last(R)); while(L/2 != R/2){ if(L % 2 == 0) res = max(res, B[L+1]); if(R % 2 == 1) res = max(res, B[R-1]); L /= 2; R /= 2; res = max(res, get_last(L)); res = max(res, get_last(R)); } L /= 2; while(L){ res = max(res, get_last(L)); L /= 2; } return res; } }; /**********************************************************************/ SegTree endRight; // koniec z prawej strony int try_add_rect(int num){ int dn = R[num].y1, up = R[num].y2 - 1, left = R[num].x1, right = R[num].x2 - 1; PII maxInterval = endRight.get_max(dn, up); if(maxInterval.first >= left){ return maxInterval.second; } endRight.add(dn, up, right, num); return CodeOK; } void del_rect(int num){ int dn = R[num].y1, up = R[num].y2 - 1, left = R[num].x1, right = R[num].x2 - 1; endRight.del(dn, up, right, num); } int main(){ input(); int num = N; sort(R, R+N, compare_ld); for(int i = 0; i < N; i++){ // probujemy dorzucic kolejne prostokaty int res = try_add_rect(i); while(res != CodeOK){ del_rect(res); num--; R[i] |= R[res]; exists[res] = false; res = try_add_rect(i); } } printf("%d\n", num); int ptr = 0; for(int i = 0; i < N; i++) if(exists[i]) R[ptr++] = R[i]; sort(R, R+num); for(int i = 0; i < num; i++) R[i].output(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | #include <stdio.h> #include <algorithm> #include <vector> #include <set> #include <map> using namespace std; typedef pair<int,int> PII; const int MaxN = 100005, Infty = 1010101010, CodeOK = -1337; struct Rectangle { int x1, y1, x2, y2; Rectangle() {} Rectangle(int _x1, int _x2, int _y1, int _y2) : x1(_x1), y1(_y1), x2(_x2), y2(_y2) {} Rectangle(FILE *fp){ fscanf(fp, "%d%d%d%d", &x1, &x2, &y1, &y2); } Rectangle operator|(const Rectangle R) const { return Rectangle(min(x1, R.x1), max(x2, R.x2), min(y1, R.y1), max(y2, R.y2)); } Rectangle& operator|=(const Rectangle R){ x1 = min(x1, R.x1); y1 = min(y1, R.y1); x2 = max(x2, R.x2); y2 = max(y2, R.y2); return *this; } bool operator<(const Rectangle R) const { if(x1 == R.x1){ if(x2 == R.x2){ return y1 < R.y1; } else return x2 < R.x2; } else return x1 < R.x1; } void output(){ printf("%d %d %d %d\n", x1, x2, y1, y2); } }; bool compare_ld(const Rectangle &R1, const Rectangle &R2){ if(R1.x1 == R2.x1) return R1.y1 < R2.y1; else return R1.x1 < R2.x1; } int N; Rectangle R[MaxN]; bool exists[MaxN]; void input(){ scanf("%d", &N); for(int i = 0; i < N; i++) R[i] = Rectangle(stdin); fill(exists, exists+N+1, true); } /************************ DRZEWO PRZEDZIALOWE *************************/ /** (wariacja na temat; pozwala na wrzucanie i usuwanie przedzialow * oraz znajdowanie max na przedziale **/ struct SegTree { static const int MaxSize = (1<<21), Base = (1<<20); // A - liczby na przedziale bazowym; B - max na dzieciach // P - numer liczby maksymalnej set<PII> A[MaxSize]; PII B[MaxSize]; SegTree(){ fill(B, B+MaxSize, PII(CodeOK, CodeOK)); } PII get_last(int num){ if(A[num].size()) return *A[num].rbegin(); else return {CodeOK, CodeOK}; } // dodaj przedzial [L,R] o wartosci v; bedzie to najwieksza dotad // wartosc na tym przedziale // num - numer tej liczby (czyli potem - prostokata) void add(int L, int R, int v, int num){ L += Base; R += Base; A[L].insert({v,num}); B[L] = max(B[L],PII(v, num)); if(L != R){ A[R].insert({v,num}); B[R] = max(B[R],PII(v, num)); } while(L/2 != R/2){ if(L % 2 == 0){ A[L+1].insert({v,num}); B[L+1] = max(B[L+1],PII(v, num)); } if(R % 2 == 1){ A[R-1].insert({v,num}); B[R-1] = max(B[R-1],PII(v, num)); } L /= 2; R /= 2; B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); B[R] = max(get_last(R), max(B[2*R], B[2*R+1])); } L /= 2; while(L){ B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); L /= 2; } } // usun przedzial [L,R] (o wartosci v, numerze num); wiadomo, ze to // najwieksza wartosc na tym przedziale void del(int L, int R, int v, int num){ L += Base; R += Base; A[L].erase({v,num}); B[L] = get_last(L); if(L != R){ A[R].erase({v,num}); B[R] = get_last(R); } while(L/2 != R/2){ if(L % 2 == 0){ A[L+1].erase({v,num}); B[L+1] = get_last(L+1); if(L < Base){ B[L+1] = max(B[L+1], max(B[2*(L+1)], B[2*(L+1)+1])); } } if(R % 2 == 1){ A[R-1].erase({v,num}); B[R-1] = get_last(R-1); if(R < Base){ B[R-1] = max(B[R-1], max(B[2*(R-1)], B[2*(R-1)+1])); } } L /= 2; R /= 2; B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); B[R] = max(get_last(R), max(B[2*R], B[2*R+1])); } L /= 2; while(L){ B[L] = max(get_last(L), max(B[2*L], B[2*L+1])); L /= 2; } } // uzyskaj maksimum na przedziale [L,R] PII get_max(int L, int R){ L += Base; R += Base; PII res = max(get_last(L), get_last(R)); while(L/2 != R/2){ if(L % 2 == 0) res = max(res, B[L+1]); if(R % 2 == 1) res = max(res, B[R-1]); L /= 2; R /= 2; res = max(res, get_last(L)); res = max(res, get_last(R)); } L /= 2; while(L){ res = max(res, get_last(L)); L /= 2; } return res; } }; /**********************************************************************/ SegTree endRight; // koniec z prawej strony int try_add_rect(int num){ int dn = R[num].y1, up = R[num].y2 - 1, left = R[num].x1, right = R[num].x2 - 1; PII maxInterval = endRight.get_max(dn, up); if(maxInterval.first >= left){ return maxInterval.second; } endRight.add(dn, up, right, num); return CodeOK; } void del_rect(int num){ int dn = R[num].y1, up = R[num].y2 - 1, left = R[num].x1, right = R[num].x2 - 1; endRight.del(dn, up, right, num); } int main(){ input(); int num = N; sort(R, R+N, compare_ld); for(int i = 0; i < N; i++){ // probujemy dorzucic kolejne prostokaty int res = try_add_rect(i); while(res != CodeOK){ del_rect(res); num--; R[i] |= R[res]; exists[res] = false; res = try_add_rect(i); } } printf("%d\n", num); int ptr = 0; for(int i = 0; i < N; i++) if(exists[i]) R[ptr++] = R[i]; sort(R, R+num); for(int i = 0; i < num; i++) R[i].output(); } |