//RTree code taken from http://superliminal.com/sources/sources.htm //RTree LICENSE: Entirely free for all uses.Enjoy! #include <cstdio> #include <cmath> #include <cassert> #include <cstdlib> #include <algorithm> using std::min; using std::max; using std::sort; #define ASSERT assert // RTree uses ASSERT( condition ) #ifndef Min #define Min min #endif //Min #ifndef Max #define Max max #endif //Max // // RTree.h // #define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL, int TMAXNODES, int TMINNODES> #define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, TMINNODES> #define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one. #define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems /// \class RTree /// Implementation of RTree, a multidimensional bounding rectangle tree. /// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree; /// /// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com) /// /// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type /// ELEMTYPE Type of element such as int or float /// NUMDIMS Number of dimensions such as 2 or 3 /// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs /// /// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle. /// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency. /// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory /// array similar to MFC CArray or STL Vector for returning search query result. /// template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2> class RTree { protected: struct Node; // Fwd decl. Used by other internal structs and iterator public: // These constant must be declared after Branch and before Node struct // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier. enum { MAXNODES = TMAXNODES, ///< Max elements in node MINNODES = TMINNODES, ///< Min elements in node }; public: RTree(); virtual ~RTree(); /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId); /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId); /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array. /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching /// \param a_context User context to pass as parameter to a_resultCallback /// \return Returns the number of entries found int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context); /// Remove all entries from tree void RemoveAll(); /// Count the data elements in this container. This is slow as no internal counter is maintained. int Count(); /// Iterator is not remove safe. class Iterator { private: enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node struct StackElement { Node* m_node; int m_branchIndex; }; public: Iterator() { Init(); } ~Iterator() { } /// Is iterator invalid bool IsNull() { return (m_tos <= 0); } /// Is iterator pointing to valid data bool IsNotNull() { return (m_tos > 0); } /// Access the current data element. Caller must be sure iterator is not NULL first. DATATYPE& operator*() { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Access the current data element. Caller must be sure iterator is not NULL first. const DATATYPE& operator*() const { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Find the next data element bool operator++() { return FindNextData(); } /// Get the bounds for this node void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS]) { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex]; for (int index = 0; index < NUMDIMS; ++index) { a_min[index] = curBranch.m_rect.m_min[index]; a_max[index] = curBranch.m_rect.m_max[index]; } } private: /// Reset iterator void Init() { m_tos = 0; } /// Find the next data element in the tree (For internal use only) bool FindNextData() { for (;;) { if (m_tos <= 0) { return false; } StackElement curTos = Pop(); // Copy stack top cause it may change as we use it if (curTos.m_node->IsLeaf()) { // Keep walking through data while we can if (curTos.m_branchIndex + 1 < curTos.m_node->m_count) { // There is more data, just point to the next one Push(curTos.m_node, curTos.m_branchIndex + 1); return true; } // No more data, so it will fall back to previous level } else { if (curTos.m_branchIndex + 1 < curTos.m_node->m_count) { // Push sibling on for future tree walk // This is the 'fall back' node when we finish with the current level Push(curTos.m_node, curTos.m_branchIndex + 1); } // Since cur node is not a leaf, push first of next level to get deeper into the tree Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child; Push(nextLevelnode, 0); // If we pushed on a new leaf, exit as the data is ready at TOS if (nextLevelnode->IsLeaf()) { return true; } } } } /// Push node and branch onto iteration stack (For internal use only) void Push(Node* a_node, int a_branchIndex) { m_stack[m_tos].m_node = a_node; m_stack[m_tos].m_branchIndex = a_branchIndex; ++m_tos; ASSERT(m_tos <= MAX_STACK); } /// Pop element off iteration stack (For internal use only) StackElement& Pop() { ASSERT(m_tos > 0); --m_tos; return m_stack[m_tos]; } StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion int m_tos; ///< Top Of Stack index friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner }; /// Get 'first' for iteration void GetFirst(Iterator& a_it) { a_it.Init(); Node* first = m_root; while (first) { if (first->IsInternalNode() && first->m_count > 1) { a_it.Push(first, 1); // Descend sibling branch later } else if (first->IsLeaf()) { if (first->m_count) { a_it.Push(first, 0); } break; } first = first->m_branch[0].m_child; } } /// Get Next for iteration void GetNext(Iterator& a_it) { ++a_it; } /// Is iterator NULL, or at end? bool IsNull(Iterator& a_it) { return a_it.IsNull(); } /// Get object at iterator position DATATYPE& GetAt(Iterator& a_it) { return *a_it; } protected: /// Minimal bounding rectangle (n-dimensional) struct Rect { ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box }; /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data struct Branch { Rect m_rect; ///< Bounds union { Node* m_child; ///< Child node DATATYPE m_data; ///< Data Id or Ptr }; }; /// Node for each branch level struct Node { bool IsInternalNode() { return (m_level > 0); } // Not a leaf, but a internal node bool IsLeaf() { return (m_level == 0); } // A leaf, contains data int m_count; ///< Count int m_level; ///< Leaf is zero, others positive Branch m_branch[MAXNODES]; ///< Branch }; /// A link list of nodes for reinsertion after a delete operation struct ListNode { ListNode* m_next; ///< Next in list Node* m_node; ///< Node }; /// Variables for finding a split partition struct PartitionVars { int m_partition[MAXNODES + 1]; int m_total; int m_minFill; int m_taken[MAXNODES + 1]; int m_count[2]; Rect m_cover[2]; ELEMTYPEREAL m_area[2]; Branch m_branchBuf[MAXNODES + 1]; int m_branchCount; Rect m_coverSplit; ELEMTYPEREAL m_coverSplitArea; }; Node* AllocNode(); void FreeNode(Node* a_node); void InitNode(Node* a_node); void InitRect(Rect* a_rect); bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level); bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level); Rect NodeCover(Node* a_node); bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode); void DisconnectBranch(Node* a_node, int a_index); int PickBranch(Rect* a_rect, Node* a_node); Rect CombineRect(Rect* a_rectA, Rect* a_rectB); void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode); ELEMTYPEREAL RectSphericalVolume(Rect* a_rect); ELEMTYPEREAL RectVolume(Rect* a_rect); ELEMTYPEREAL CalcRectVolume(Rect* a_rect); void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars); void ChoosePartition(PartitionVars* a_parVars, int a_minFill); void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars); void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill); void PickSeeds(PartitionVars* a_parVars); void Classify(int a_index, int a_group, PartitionVars* a_parVars); bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root); bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode); ListNode* AllocListNode(); void FreeListNode(ListNode* a_listNode); bool Overlap(Rect* a_rectA, Rect* a_rectB); void ReInsert(Node* a_node, ListNode** a_listNode); bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context); void RemoveAllRec(Node* a_node); void Reset(); void CountRec(Node* a_node, int& a_count); Node* m_root; ///< Root of tree ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions }; RTREE_TEMPLATE RTREE_QUAL::RTree() { ASSERT(MAXNODES > MINNODES); ASSERT(MINNODES > 0); // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int)); // Precomputed volumes of the unit spheres for the first few dimensions const float UNIT_SPHERE_VOLUMES[] = { 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20 }; m_root = AllocNode(); m_root->m_level = 0; m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS]; } RTREE_TEMPLATE RTREE_QUAL::~RTree() { Reset(); // Free, or reset node memory } RTREE_TEMPLATE void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } InsertRect(&rect, a_dataId, &m_root, 0); } RTREE_TEMPLATE void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } RemoveRect(&rect, a_dataId, &m_root); } RTREE_TEMPLATE int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. int foundCount = 0; Search(m_root, &rect, foundCount, a_resultCallback, a_context); return foundCount; } RTREE_TEMPLATE int RTREE_QUAL::Count() { int count = 0; CountRec(m_root, count); return count; } RTREE_TEMPLATE void RTREE_QUAL::CountRec(Node* a_node, int& a_count) { if (a_node->IsInternalNode()) // not a leaf node { for (int index = 0; index < a_node->m_count; ++index) { CountRec(a_node->m_branch[index].m_child, a_count); } } else // A leaf node { a_count += a_node->m_count; } } RTREE_TEMPLATE void RTREE_QUAL::RemoveAll() { // Delete all existing nodes Reset(); m_root = AllocNode(); m_root->m_level = 0; } RTREE_TEMPLATE void RTREE_QUAL::Reset() { #ifdef RTREE_DONT_USE_MEMPOOLS // Delete all existing nodes RemoveAllRec(m_root); #else // RTREE_DONT_USE_MEMPOOLS // Just reset memory pools. We are not using complex types // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::RemoveAllRec(Node* a_node) { ASSERT(a_node); ASSERT(a_node->m_level >= 0); if (a_node->IsInternalNode()) // This is an internal node in the tree { for (int index = 0; index < a_node->m_count; ++index) { RemoveAllRec(a_node->m_branch[index].m_child); } } FreeNode(a_node); } RTREE_TEMPLATE typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode() { Node* newNode; #ifdef RTREE_DONT_USE_MEMPOOLS newNode = new Node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS InitNode(newNode); return newNode; } RTREE_TEMPLATE void RTREE_QUAL::FreeNode(Node* a_node) { ASSERT(a_node); #ifdef RTREE_DONT_USE_MEMPOOLS delete a_node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } // Allocate space for a node in the list used in DeletRect to // store Nodes that are too empty. RTREE_TEMPLATE typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode() { #ifdef RTREE_DONT_USE_MEMPOOLS return new ListNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::FreeListNode(ListNode* a_listNode) { #ifdef RTREE_DONT_USE_MEMPOOLS delete a_listNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::InitNode(Node* a_node) { a_node->m_count = 0; a_node->m_level = -1; } RTREE_TEMPLATE void RTREE_QUAL::InitRect(Rect* a_rect) { for (int index = 0; index < NUMDIMS; ++index) { a_rect->m_min[index] = (ELEMTYPE)0; a_rect->m_max[index] = (ELEMTYPE)0; } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. RTREE_TEMPLATE bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level) { ASSERT(a_rect && a_node && a_newNode); ASSERT(a_level >= 0 && a_level <= a_node->m_level); int index; Branch branch; Node* otherNode; // Still above level for insertion, go down tree recursively if (a_node->m_level > a_level) { index = PickBranch(a_rect, a_node); if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level)) { // Child was not split a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect)); return false; } else // Child was split { a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child); branch.m_child = otherNode; branch.m_rect = NodeCover(otherNode); return AddBranch(&branch, a_node, a_newNode); } } else if (a_node->m_level == a_level) // Have reached level for insertion. Add rect, split if necessary { branch.m_rect = *a_rect; branch.m_child = (Node*)a_id; // Child field of leaves contains id of data record return AddBranch(&branch, a_node, a_newNode); } else { // Should never occur ASSERT(0); return false; } } // Insert a data rectangle into an index structure. // InsertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // RTREE_TEMPLATE bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level) { ASSERT(a_rect && a_root); ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level); #ifdef _DEBUG for (int index = 0; index < NUMDIMS; ++index) { ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]); } #endif //_DEBUG Node* newRoot; Node* newNode; Branch branch; if (InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) // Root split { newRoot = AllocNode(); // Grow tree taller and new root newRoot->m_level = (*a_root)->m_level + 1; branch.m_rect = NodeCover(*a_root); branch.m_child = *a_root; AddBranch(&branch, newRoot, NULL); branch.m_rect = NodeCover(newNode); branch.m_child = newNode; AddBranch(&branch, newRoot, NULL); *a_root = newRoot; return true; } return false; } // Find the smallest rectangle that includes all rectangles in branches of a node. RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node) { ASSERT(a_node); int firstTime = true; Rect rect; InitRect(&rect); for (int index = 0; index < a_node->m_count; ++index) { if (firstTime) { rect = a_node->m_branch[index].m_rect; firstTime = false; } else { rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect)); } } return rect; } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. RTREE_TEMPLATE bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode) { ASSERT(a_branch); ASSERT(a_node); if (a_node->m_count < MAXNODES) // Split won't be necessary { a_node->m_branch[a_node->m_count] = *a_branch; ++a_node->m_count; return false; } else { ASSERT(a_newNode); SplitNode(a_node, a_branch, a_newNode); return true; } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed RTREE_TEMPLATE void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index) { ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES)); ASSERT(a_node->m_count > 0); // Remove element by swapping with the last element to prevent gaps in array a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1]; --a_node->m_count; } // Pick a branch. Pick the one that will need the smallest increase // in area to accomodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. RTREE_TEMPLATE int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node) { ASSERT(a_rect && a_node); bool firstTime = true; ELEMTYPEREAL increase; ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1; ELEMTYPEREAL area; ELEMTYPEREAL bestArea; int best; Rect tempRect; for (int index = 0; index < a_node->m_count; ++index) { Rect* curRect = &a_node->m_branch[index].m_rect; area = CalcRectVolume(curRect); tempRect = CombineRect(a_rect, curRect); increase = CalcRectVolume(&tempRect) - area; if ((increase < bestIncr) || firstTime) { best = index; bestArea = area; bestIncr = increase; firstTime = false; } else if ((increase == bestIncr) && (area < bestArea)) { best = index; bestArea = area; bestIncr = increase; } } return best; } // Combine two rectangles into larger one containing both RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB) { ASSERT(a_rectA && a_rectB); Rect newRect; for (int index = 0; index < NUMDIMS; ++index) { newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]); newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]); } return newRect; } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. RTREE_TEMPLATE void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode) { ASSERT(a_node); ASSERT(a_branch); // Could just use local here, but member or external is faster since it is reused PartitionVars localVars; PartitionVars* parVars = &localVars; int level; // Load all the branches into a buffer, initialize old node level = a_node->m_level; GetBranches(a_node, a_branch, parVars); // Find partition ChoosePartition(parVars, MINNODES); // Put branches from buffer into 2 nodes according to chosen partition *a_newNode = AllocNode(); (*a_newNode)->m_level = a_node->m_level = level; LoadNodes(a_node, *a_newNode, parVars); ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total); } // Calculate the n-dimensional volume of a rectangle RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect) { ASSERT(a_rect); ELEMTYPEREAL volume = (ELEMTYPEREAL)1; for (int index = 0; index<NUMDIMS; ++index) { volume *= a_rect->m_max[index] - a_rect->m_min[index]; } ASSERT(volume >= (ELEMTYPEREAL)0); return volume; } // The exact volume of the bounding sphere for the given Rect RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect) { ASSERT(a_rect); ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0; ELEMTYPEREAL radius; for (int index = 0; index < NUMDIMS; ++index) { ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f; sumOfSquares += halfExtent * halfExtent; } radius = (ELEMTYPEREAL)sqrt(sumOfSquares); // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x. if (NUMDIMS == 3) { return (radius * radius * radius * m_unitSphereVolume); } else if (NUMDIMS == 2) { return (radius * radius * m_unitSphereVolume); } else { return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume); } } // Use one of the methods to calculate retangle volume RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect) { #ifdef RTREE_USE_SPHERICAL_VOLUME return RectSphericalVolume(a_rect); // Slower but helps certain merge cases #else // RTREE_USE_SPHERICAL_VOLUME return RectVolume(a_rect); // Faster but can cause poor merges #endif // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. RTREE_TEMPLATE void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars) { ASSERT(a_node); ASSERT(a_branch); ASSERT(a_node->m_count == MAXNODES); // Load the branch buffer for (int index = 0; index < MAXNODES; ++index) { a_parVars->m_branchBuf[index] = a_node->m_branch[index]; } a_parVars->m_branchBuf[MAXNODES] = *a_branch; a_parVars->m_branchCount = MAXNODES + 1; // Calculate rect containing all in the set a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect; for (int index = 1; index < MAXNODES + 1; ++index) { a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect); } a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit); InitNode(a_node); } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. RTREE_TEMPLATE void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill) { ASSERT(a_parVars); ELEMTYPEREAL biggestDiff; int group, chosen, betterGroup; InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill); PickSeeds(a_parVars); while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) && (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill)) && (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) { biggestDiff = (ELEMTYPEREAL)-1; for (int index = 0; index<a_parVars->m_total; ++index) { if (!a_parVars->m_taken[index]) { Rect* curRect = &a_parVars->m_branchBuf[index].m_rect; Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]); Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]); ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0]; ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1]; ELEMTYPEREAL diff = growth1 - growth0; if (diff >= 0) { group = 0; } else { group = 1; diff = -diff; } if (diff > biggestDiff) { biggestDiff = diff; chosen = index; betterGroup = group; } else if ((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup])) { chosen = index; betterGroup = group; } } } Classify(chosen, betterGroup, a_parVars); } // If one group too full, put remaining rects in the other if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) { if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill) { group = 1; } else { group = 0; } for (int index = 0; index<a_parVars->m_total; ++index) { if (!a_parVars->m_taken[index]) { Classify(index, group, a_parVars); } } } ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total); ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) && (a_parVars->m_count[1] >= a_parVars->m_minFill)); } // Copy branches from the buffer into two nodes according to the partition. RTREE_TEMPLATE void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars) { ASSERT(a_nodeA); ASSERT(a_nodeB); ASSERT(a_parVars); for (int index = 0; index < a_parVars->m_total; ++index) { ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1); if (a_parVars->m_partition[index] == 0) { AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL); } else if (a_parVars->m_partition[index] == 1) { AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL); } } } // Initialize a PartitionVars structure. RTREE_TEMPLATE void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill) { ASSERT(a_parVars); a_parVars->m_count[0] = a_parVars->m_count[1] = 0; a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0; a_parVars->m_total = a_maxRects; a_parVars->m_minFill = a_minFill; for (int index = 0; index < a_maxRects; ++index) { a_parVars->m_taken[index] = false; a_parVars->m_partition[index] = -1; } } RTREE_TEMPLATE void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars) { int seed0, seed1; ELEMTYPEREAL worst, waste; ELEMTYPEREAL area[MAXNODES + 1]; for (int index = 0; index<a_parVars->m_total; ++index) { area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect); } worst = -a_parVars->m_coverSplitArea - 1; for (int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA) { for (int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB) { Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect); waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]; if (waste > worst) { worst = waste; seed0 = indexA; seed1 = indexB; } } } Classify(seed0, 0, a_parVars); Classify(seed1, 1, a_parVars); } // Put a branch in one of the groups. RTREE_TEMPLATE void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars) { ASSERT(a_parVars); ASSERT(!a_parVars->m_taken[a_index]); a_parVars->m_partition[a_index] = a_group; a_parVars->m_taken[a_index] = true; if (a_parVars->m_count[a_group] == 0) { a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect; } else { a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]); } a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]); ++a_parVars->m_count[a_group]; } // Delete a data rectangle from an index structure. // Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // RemoveRect provides for eliminating the root. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root) { ASSERT(a_rect && a_root); ASSERT(*a_root); Node* tempNode; ListNode* reInsertList = NULL; if (!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList)) { // Found and deleted a data item // Reinsert any branches from eliminated nodes while (reInsertList) { tempNode = reInsertList->m_node; for (int index = 0; index < tempNode->m_count; ++index) { InsertRect(&(tempNode->m_branch[index].m_rect), tempNode->m_branch[index].m_data, a_root, tempNode->m_level); } ListNode* remLNode = reInsertList; reInsertList = reInsertList->m_next; FreeNode(remLNode->m_node); FreeListNode(remLNode); } // Check for redundant root (not leaf, 1 child) and eliminate if ((*a_root)->m_count == 1 && (*a_root)->IsInternalNode()) { tempNode = (*a_root)->m_branch[0].m_child; ASSERT(tempNode); FreeNode(*a_root); *a_root = tempNode; } return false; } else { return true; } } // Delete a rectangle from non-root part of an index structure. // Called by RemoveRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode) { ASSERT(a_rect && a_node && a_listNode); ASSERT(a_node->m_level >= 0); if (a_node->IsInternalNode()) // not a leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &(a_node->m_branch[index].m_rect))) { if (!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode)) { if (a_node->m_branch[index].m_child->m_count >= MINNODES) { // child removed, just resize parent rect a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child); } else { // child removed, not enough entries in node, eliminate node ReInsert(a_node->m_branch[index].m_child, a_listNode); DisconnectBranch(a_node, index); // Must return after this call as count has changed } return false; } } } return true; } else // A leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (a_node->m_branch[index].m_child == (Node*)a_id) { DisconnectBranch(a_node, index); // Must return after this call as count has changed return false; } } return true; } } // Decide whether two rectangles overlap. RTREE_TEMPLATE bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB) { ASSERT(a_rectA && a_rectB); for (int index = 0; index < NUMDIMS; ++index) { if (a_rectA->m_min[index] > a_rectB->m_max[index] || a_rectB->m_min[index] > a_rectA->m_max[index]) { return false; } } return true; } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. RTREE_TEMPLATE void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode) { ListNode* newListNode; newListNode = AllocListNode(); newListNode->m_node = a_node; newListNode->m_next = *a_listNode; *a_listNode = newListNode; } // Search in an index tree or subtree for all data retangles that overlap the argument rectangle. RTREE_TEMPLATE bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) { ASSERT(a_node); ASSERT(a_node->m_level >= 0); ASSERT(a_rect); if (a_node->IsInternalNode()) // This is an internal node in the tree { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) { if (!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context)) { return false; // Don't continue searching } } } } else // This is a leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) { DATATYPE& id = a_node->m_branch[index].m_data; // NOTE: There are different ways to return results. Here's where to modify if (&a_resultCallback) { ++a_foundCount; if (!a_resultCallback(id, a_context)) { return false; // Don't continue searching } } } } } return true; // Continue searching } #undef RTREE_TEMPLATE #undef RTREE_QUAL //------------------------------------------------------------- #define MERGE_INFINITY 1000000000 struct Rect { int min[2]; int max[2]; bool valid; }; int n; Rect rects[100000]; int hits[100000]; int hitsCount; int answer[100000]; int answerSize; RTree<int, int, 2, float> spatialIndex; int searchMin[2]; int searchMax[2]; int mergeMin[2]; int mergeMax[2]; bool searchCallback(int id, void* arg) { hits[hitsCount++] = id; return true; // keep going } void search(int index) { hitsCount = 0; Rect & r = rects[index]; searchMin[0] = r.min[0] + 1; searchMin[1] = r.min[1] + 1; searchMax[0] = r.max[0] - 1; searchMax[1] = r.max[1] - 1; spatialIndex.Search(searchMin, searchMax, searchCallback, NULL); } bool answerLessOperator(int i1, int i2) { Rect & r1 = rects[i1]; Rect & r2 = rects[i2]; if (r1.min[0] != r2.min[0]) return r1.min[0] < r2.min[0]; if (r1.max[0] != r2.max[0]) return r1.max[0] < r2.max[0]; if (r1.min[1] != r2.min[1]) return r1.min[1] < r2.min[1]; if (r1.max[1] != r2.max[1]) return r1.max[1] < r2.max[1]; return true; } int main() { int n; scanf("%d", &n); for (int i = 0; i < n; i++) { Rect & r = rects[i]; scanf("%d%d%d%d", r.min, r.max, r.min + 1, r.max + 1); r.min[0] <<= 1; r.min[1] <<= 1; r.max[0] <<= 1; r.max[1] <<= 1; r.valid = true; spatialIndex.Insert(r.min, r.max, i); } for (int i = 0; i < n; i++) { Rect & r = rects[i]; if (!r.valid) continue; search(i); if (hitsCount <= 1) continue; mergeMin[0] = MERGE_INFINITY; mergeMin[1] = MERGE_INFINITY; mergeMax[0] = -1; mergeMax[1] = -1; for (int si = 0; si < hitsCount; si++) { Rect & sr = rects[hits[si]]; if (sr.min[0] < mergeMin[0]) mergeMin[0] = sr.min[0]; if (sr.min[1] < mergeMin[1]) mergeMin[1] = sr.min[1]; if (sr.max[0] > mergeMax[0]) mergeMax[0] = sr.max[0]; if (sr.max[1] > mergeMax[1]) mergeMax[1] = sr.max[1]; sr.valid = false; spatialIndex.Remove(sr.min, sr.max, hits[si]); } r.min[0] = mergeMin[0]; r.min[1] = mergeMin[1]; r.max[0] = mergeMax[0]; r.max[1] = mergeMax[1]; r.valid = true; spatialIndex.Insert(r.min, r.max, i); i--; } answerSize = 0; for (int i = 0; i < n; i++) { if (rects[i].valid) answer[answerSize++] = i; } sort(answer, answer + answerSize, answerLessOperator); printf("%d\n", answerSize); for (int i = 0; i < answerSize; i++) { Rect & ar = rects[answer[i]]; printf("%d %d %d %d\n", ar.min[0] >> 1, ar.max[0] >> 1, ar.min[1] >> 1, ar.max[1] >> 1); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 | //RTree code taken from http://superliminal.com/sources/sources.htm //RTree LICENSE: Entirely free for all uses.Enjoy! #include <cstdio> #include <cmath> #include <cassert> #include <cstdlib> #include <algorithm> using std::min; using std::max; using std::sort; #define ASSERT assert // RTree uses ASSERT( condition ) #ifndef Min #define Min min #endif //Min #ifndef Max #define Max max #endif //Max // // RTree.h // #define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL, int TMAXNODES, int TMINNODES> #define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, TMINNODES> #define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one. #define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems /// \class RTree /// Implementation of RTree, a multidimensional bounding rectangle tree. /// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree; /// /// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com) /// /// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type /// ELEMTYPE Type of element such as int or float /// NUMDIMS Number of dimensions such as 2 or 3 /// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs /// /// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle. /// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency. /// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory /// array similar to MFC CArray or STL Vector for returning search query result. /// template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2> class RTree { protected: struct Node; // Fwd decl. Used by other internal structs and iterator public: // These constant must be declared after Branch and before Node struct // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier. enum { MAXNODES = TMAXNODES, ///< Max elements in node MINNODES = TMINNODES, ///< Min elements in node }; public: RTree(); virtual ~RTree(); /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId); /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId); /// Find all within search rectangle /// \param a_min Min of search bounding rect /// \param a_max Max of search bounding rect /// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array. /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching /// \param a_context User context to pass as parameter to a_resultCallback /// \return Returns the number of entries found int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context); /// Remove all entries from tree void RemoveAll(); /// Count the data elements in this container. This is slow as no internal counter is maintained. int Count(); /// Iterator is not remove safe. class Iterator { private: enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node struct StackElement { Node* m_node; int m_branchIndex; }; public: Iterator() { Init(); } ~Iterator() { } /// Is iterator invalid bool IsNull() { return (m_tos <= 0); } /// Is iterator pointing to valid data bool IsNotNull() { return (m_tos > 0); } /// Access the current data element. Caller must be sure iterator is not NULL first. DATATYPE& operator*() { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Access the current data element. Caller must be sure iterator is not NULL first. const DATATYPE& operator*() const { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; return curTos.m_node->m_branch[curTos.m_branchIndex].m_data; } /// Find the next data element bool operator++() { return FindNextData(); } /// Get the bounds for this node void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS]) { ASSERT(IsNotNull()); StackElement& curTos = m_stack[m_tos - 1]; Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex]; for (int index = 0; index < NUMDIMS; ++index) { a_min[index] = curBranch.m_rect.m_min[index]; a_max[index] = curBranch.m_rect.m_max[index]; } } private: /// Reset iterator void Init() { m_tos = 0; } /// Find the next data element in the tree (For internal use only) bool FindNextData() { for (;;) { if (m_tos <= 0) { return false; } StackElement curTos = Pop(); // Copy stack top cause it may change as we use it if (curTos.m_node->IsLeaf()) { // Keep walking through data while we can if (curTos.m_branchIndex + 1 < curTos.m_node->m_count) { // There is more data, just point to the next one Push(curTos.m_node, curTos.m_branchIndex + 1); return true; } // No more data, so it will fall back to previous level } else { if (curTos.m_branchIndex + 1 < curTos.m_node->m_count) { // Push sibling on for future tree walk // This is the 'fall back' node when we finish with the current level Push(curTos.m_node, curTos.m_branchIndex + 1); } // Since cur node is not a leaf, push first of next level to get deeper into the tree Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child; Push(nextLevelnode, 0); // If we pushed on a new leaf, exit as the data is ready at TOS if (nextLevelnode->IsLeaf()) { return true; } } } } /// Push node and branch onto iteration stack (For internal use only) void Push(Node* a_node, int a_branchIndex) { m_stack[m_tos].m_node = a_node; m_stack[m_tos].m_branchIndex = a_branchIndex; ++m_tos; ASSERT(m_tos <= MAX_STACK); } /// Pop element off iteration stack (For internal use only) StackElement& Pop() { ASSERT(m_tos > 0); --m_tos; return m_stack[m_tos]; } StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion int m_tos; ///< Top Of Stack index friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner }; /// Get 'first' for iteration void GetFirst(Iterator& a_it) { a_it.Init(); Node* first = m_root; while (first) { if (first->IsInternalNode() && first->m_count > 1) { a_it.Push(first, 1); // Descend sibling branch later } else if (first->IsLeaf()) { if (first->m_count) { a_it.Push(first, 0); } break; } first = first->m_branch[0].m_child; } } /// Get Next for iteration void GetNext(Iterator& a_it) { ++a_it; } /// Is iterator NULL, or at end? bool IsNull(Iterator& a_it) { return a_it.IsNull(); } /// Get object at iterator position DATATYPE& GetAt(Iterator& a_it) { return *a_it; } protected: /// Minimal bounding rectangle (n-dimensional) struct Rect { ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box }; /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data struct Branch { Rect m_rect; ///< Bounds union { Node* m_child; ///< Child node DATATYPE m_data; ///< Data Id or Ptr }; }; /// Node for each branch level struct Node { bool IsInternalNode() { return (m_level > 0); } // Not a leaf, but a internal node bool IsLeaf() { return (m_level == 0); } // A leaf, contains data int m_count; ///< Count int m_level; ///< Leaf is zero, others positive Branch m_branch[MAXNODES]; ///< Branch }; /// A link list of nodes for reinsertion after a delete operation struct ListNode { ListNode* m_next; ///< Next in list Node* m_node; ///< Node }; /// Variables for finding a split partition struct PartitionVars { int m_partition[MAXNODES + 1]; int m_total; int m_minFill; int m_taken[MAXNODES + 1]; int m_count[2]; Rect m_cover[2]; ELEMTYPEREAL m_area[2]; Branch m_branchBuf[MAXNODES + 1]; int m_branchCount; Rect m_coverSplit; ELEMTYPEREAL m_coverSplitArea; }; Node* AllocNode(); void FreeNode(Node* a_node); void InitNode(Node* a_node); void InitRect(Rect* a_rect); bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level); bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level); Rect NodeCover(Node* a_node); bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode); void DisconnectBranch(Node* a_node, int a_index); int PickBranch(Rect* a_rect, Node* a_node); Rect CombineRect(Rect* a_rectA, Rect* a_rectB); void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode); ELEMTYPEREAL RectSphericalVolume(Rect* a_rect); ELEMTYPEREAL RectVolume(Rect* a_rect); ELEMTYPEREAL CalcRectVolume(Rect* a_rect); void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars); void ChoosePartition(PartitionVars* a_parVars, int a_minFill); void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars); void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill); void PickSeeds(PartitionVars* a_parVars); void Classify(int a_index, int a_group, PartitionVars* a_parVars); bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root); bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode); ListNode* AllocListNode(); void FreeListNode(ListNode* a_listNode); bool Overlap(Rect* a_rectA, Rect* a_rectB); void ReInsert(Node* a_node, ListNode** a_listNode); bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context); void RemoveAllRec(Node* a_node); void Reset(); void CountRec(Node* a_node, int& a_count); Node* m_root; ///< Root of tree ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions }; RTREE_TEMPLATE RTREE_QUAL::RTree() { ASSERT(MAXNODES > MINNODES); ASSERT(MINNODES > 0); // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int)); // Precomputed volumes of the unit spheres for the first few dimensions const float UNIT_SPHERE_VOLUMES[] = { 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20 }; m_root = AllocNode(); m_root->m_level = 0; m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS]; } RTREE_TEMPLATE RTREE_QUAL::~RTree() { Reset(); // Free, or reset node memory } RTREE_TEMPLATE void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } InsertRect(&rect, a_dataId, &m_root, 0); } RTREE_TEMPLATE void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } RemoveRect(&rect, a_dataId, &m_root); } RTREE_TEMPLATE int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) { #ifdef _DEBUG for (int index = 0; index<NUMDIMS; ++index) { ASSERT(a_min[index] <= a_max[index]); } #endif //_DEBUG Rect rect; for (int axis = 0; axis<NUMDIMS; ++axis) { rect.m_min[axis] = a_min[axis]; rect.m_max[axis] = a_max[axis]; } // NOTE: May want to return search result another way, perhaps returning the number of found elements here. int foundCount = 0; Search(m_root, &rect, foundCount, a_resultCallback, a_context); return foundCount; } RTREE_TEMPLATE int RTREE_QUAL::Count() { int count = 0; CountRec(m_root, count); return count; } RTREE_TEMPLATE void RTREE_QUAL::CountRec(Node* a_node, int& a_count) { if (a_node->IsInternalNode()) // not a leaf node { for (int index = 0; index < a_node->m_count; ++index) { CountRec(a_node->m_branch[index].m_child, a_count); } } else // A leaf node { a_count += a_node->m_count; } } RTREE_TEMPLATE void RTREE_QUAL::RemoveAll() { // Delete all existing nodes Reset(); m_root = AllocNode(); m_root->m_level = 0; } RTREE_TEMPLATE void RTREE_QUAL::Reset() { #ifdef RTREE_DONT_USE_MEMPOOLS // Delete all existing nodes RemoveAllRec(m_root); #else // RTREE_DONT_USE_MEMPOOLS // Just reset memory pools. We are not using complex types // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::RemoveAllRec(Node* a_node) { ASSERT(a_node); ASSERT(a_node->m_level >= 0); if (a_node->IsInternalNode()) // This is an internal node in the tree { for (int index = 0; index < a_node->m_count; ++index) { RemoveAllRec(a_node->m_branch[index].m_child); } } FreeNode(a_node); } RTREE_TEMPLATE typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode() { Node* newNode; #ifdef RTREE_DONT_USE_MEMPOOLS newNode = new Node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS InitNode(newNode); return newNode; } RTREE_TEMPLATE void RTREE_QUAL::FreeNode(Node* a_node) { ASSERT(a_node); #ifdef RTREE_DONT_USE_MEMPOOLS delete a_node; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } // Allocate space for a node in the list used in DeletRect to // store Nodes that are too empty. RTREE_TEMPLATE typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode() { #ifdef RTREE_DONT_USE_MEMPOOLS return new ListNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::FreeListNode(ListNode* a_listNode) { #ifdef RTREE_DONT_USE_MEMPOOLS delete a_listNode; #else // RTREE_DONT_USE_MEMPOOLS // EXAMPLE #endif // RTREE_DONT_USE_MEMPOOLS } RTREE_TEMPLATE void RTREE_QUAL::InitNode(Node* a_node) { a_node->m_count = 0; a_node->m_level = -1; } RTREE_TEMPLATE void RTREE_QUAL::InitRect(Rect* a_rect) { for (int index = 0; index < NUMDIMS; ++index) { a_rect->m_min[index] = (ELEMTYPE)0; a_rect->m_max[index] = (ELEMTYPE)0; } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. RTREE_TEMPLATE bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level) { ASSERT(a_rect && a_node && a_newNode); ASSERT(a_level >= 0 && a_level <= a_node->m_level); int index; Branch branch; Node* otherNode; // Still above level for insertion, go down tree recursively if (a_node->m_level > a_level) { index = PickBranch(a_rect, a_node); if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level)) { // Child was not split a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect)); return false; } else // Child was split { a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child); branch.m_child = otherNode; branch.m_rect = NodeCover(otherNode); return AddBranch(&branch, a_node, a_newNode); } } else if (a_node->m_level == a_level) // Have reached level for insertion. Add rect, split if necessary { branch.m_rect = *a_rect; branch.m_child = (Node*)a_id; // Child field of leaves contains id of data record return AddBranch(&branch, a_node, a_newNode); } else { // Should never occur ASSERT(0); return false; } } // Insert a data rectangle into an index structure. // InsertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // RTREE_TEMPLATE bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level) { ASSERT(a_rect && a_root); ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level); #ifdef _DEBUG for (int index = 0; index < NUMDIMS; ++index) { ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]); } #endif //_DEBUG Node* newRoot; Node* newNode; Branch branch; if (InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) // Root split { newRoot = AllocNode(); // Grow tree taller and new root newRoot->m_level = (*a_root)->m_level + 1; branch.m_rect = NodeCover(*a_root); branch.m_child = *a_root; AddBranch(&branch, newRoot, NULL); branch.m_rect = NodeCover(newNode); branch.m_child = newNode; AddBranch(&branch, newRoot, NULL); *a_root = newRoot; return true; } return false; } // Find the smallest rectangle that includes all rectangles in branches of a node. RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node) { ASSERT(a_node); int firstTime = true; Rect rect; InitRect(&rect); for (int index = 0; index < a_node->m_count; ++index) { if (firstTime) { rect = a_node->m_branch[index].m_rect; firstTime = false; } else { rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect)); } } return rect; } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. RTREE_TEMPLATE bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode) { ASSERT(a_branch); ASSERT(a_node); if (a_node->m_count < MAXNODES) // Split won't be necessary { a_node->m_branch[a_node->m_count] = *a_branch; ++a_node->m_count; return false; } else { ASSERT(a_newNode); SplitNode(a_node, a_branch, a_newNode); return true; } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed RTREE_TEMPLATE void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index) { ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES)); ASSERT(a_node->m_count > 0); // Remove element by swapping with the last element to prevent gaps in array a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1]; --a_node->m_count; } // Pick a branch. Pick the one that will need the smallest increase // in area to accomodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. RTREE_TEMPLATE int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node) { ASSERT(a_rect && a_node); bool firstTime = true; ELEMTYPEREAL increase; ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1; ELEMTYPEREAL area; ELEMTYPEREAL bestArea; int best; Rect tempRect; for (int index = 0; index < a_node->m_count; ++index) { Rect* curRect = &a_node->m_branch[index].m_rect; area = CalcRectVolume(curRect); tempRect = CombineRect(a_rect, curRect); increase = CalcRectVolume(&tempRect) - area; if ((increase < bestIncr) || firstTime) { best = index; bestArea = area; bestIncr = increase; firstTime = false; } else if ((increase == bestIncr) && (area < bestArea)) { best = index; bestArea = area; bestIncr = increase; } } return best; } // Combine two rectangles into larger one containing both RTREE_TEMPLATE typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB) { ASSERT(a_rectA && a_rectB); Rect newRect; for (int index = 0; index < NUMDIMS; ++index) { newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]); newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]); } return newRect; } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. RTREE_TEMPLATE void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode) { ASSERT(a_node); ASSERT(a_branch); // Could just use local here, but member or external is faster since it is reused PartitionVars localVars; PartitionVars* parVars = &localVars; int level; // Load all the branches into a buffer, initialize old node level = a_node->m_level; GetBranches(a_node, a_branch, parVars); // Find partition ChoosePartition(parVars, MINNODES); // Put branches from buffer into 2 nodes according to chosen partition *a_newNode = AllocNode(); (*a_newNode)->m_level = a_node->m_level = level; LoadNodes(a_node, *a_newNode, parVars); ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total); } // Calculate the n-dimensional volume of a rectangle RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect) { ASSERT(a_rect); ELEMTYPEREAL volume = (ELEMTYPEREAL)1; for (int index = 0; index<NUMDIMS; ++index) { volume *= a_rect->m_max[index] - a_rect->m_min[index]; } ASSERT(volume >= (ELEMTYPEREAL)0); return volume; } // The exact volume of the bounding sphere for the given Rect RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect) { ASSERT(a_rect); ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0; ELEMTYPEREAL radius; for (int index = 0; index < NUMDIMS; ++index) { ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f; sumOfSquares += halfExtent * halfExtent; } radius = (ELEMTYPEREAL)sqrt(sumOfSquares); // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x. if (NUMDIMS == 3) { return (radius * radius * radius * m_unitSphereVolume); } else if (NUMDIMS == 2) { return (radius * radius * m_unitSphereVolume); } else { return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume); } } // Use one of the methods to calculate retangle volume RTREE_TEMPLATE ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect) { #ifdef RTREE_USE_SPHERICAL_VOLUME return RectSphericalVolume(a_rect); // Slower but helps certain merge cases #else // RTREE_USE_SPHERICAL_VOLUME return RectVolume(a_rect); // Faster but can cause poor merges #endif // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. RTREE_TEMPLATE void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars) { ASSERT(a_node); ASSERT(a_branch); ASSERT(a_node->m_count == MAXNODES); // Load the branch buffer for (int index = 0; index < MAXNODES; ++index) { a_parVars->m_branchBuf[index] = a_node->m_branch[index]; } a_parVars->m_branchBuf[MAXNODES] = *a_branch; a_parVars->m_branchCount = MAXNODES + 1; // Calculate rect containing all in the set a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect; for (int index = 1; index < MAXNODES + 1; ++index) { a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect); } a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit); InitNode(a_node); } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. RTREE_TEMPLATE void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill) { ASSERT(a_parVars); ELEMTYPEREAL biggestDiff; int group, chosen, betterGroup; InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill); PickSeeds(a_parVars); while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) && (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill)) && (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) { biggestDiff = (ELEMTYPEREAL)-1; for (int index = 0; index<a_parVars->m_total; ++index) { if (!a_parVars->m_taken[index]) { Rect* curRect = &a_parVars->m_branchBuf[index].m_rect; Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]); Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]); ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0]; ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1]; ELEMTYPEREAL diff = growth1 - growth0; if (diff >= 0) { group = 0; } else { group = 1; diff = -diff; } if (diff > biggestDiff) { biggestDiff = diff; chosen = index; betterGroup = group; } else if ((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup])) { chosen = index; betterGroup = group; } } } Classify(chosen, betterGroup, a_parVars); } // If one group too full, put remaining rects in the other if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) { if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill) { group = 1; } else { group = 0; } for (int index = 0; index<a_parVars->m_total; ++index) { if (!a_parVars->m_taken[index]) { Classify(index, group, a_parVars); } } } ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total); ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) && (a_parVars->m_count[1] >= a_parVars->m_minFill)); } // Copy branches from the buffer into two nodes according to the partition. RTREE_TEMPLATE void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars) { ASSERT(a_nodeA); ASSERT(a_nodeB); ASSERT(a_parVars); for (int index = 0; index < a_parVars->m_total; ++index) { ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1); if (a_parVars->m_partition[index] == 0) { AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL); } else if (a_parVars->m_partition[index] == 1) { AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL); } } } // Initialize a PartitionVars structure. RTREE_TEMPLATE void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill) { ASSERT(a_parVars); a_parVars->m_count[0] = a_parVars->m_count[1] = 0; a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0; a_parVars->m_total = a_maxRects; a_parVars->m_minFill = a_minFill; for (int index = 0; index < a_maxRects; ++index) { a_parVars->m_taken[index] = false; a_parVars->m_partition[index] = -1; } } RTREE_TEMPLATE void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars) { int seed0, seed1; ELEMTYPEREAL worst, waste; ELEMTYPEREAL area[MAXNODES + 1]; for (int index = 0; index<a_parVars->m_total; ++index) { area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect); } worst = -a_parVars->m_coverSplitArea - 1; for (int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA) { for (int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB) { Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect); waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]; if (waste > worst) { worst = waste; seed0 = indexA; seed1 = indexB; } } } Classify(seed0, 0, a_parVars); Classify(seed1, 1, a_parVars); } // Put a branch in one of the groups. RTREE_TEMPLATE void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars) { ASSERT(a_parVars); ASSERT(!a_parVars->m_taken[a_index]); a_parVars->m_partition[a_index] = a_group; a_parVars->m_taken[a_index] = true; if (a_parVars->m_count[a_group] == 0) { a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect; } else { a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]); } a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]); ++a_parVars->m_count[a_group]; } // Delete a data rectangle from an index structure. // Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // RemoveRect provides for eliminating the root. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root) { ASSERT(a_rect && a_root); ASSERT(*a_root); Node* tempNode; ListNode* reInsertList = NULL; if (!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList)) { // Found and deleted a data item // Reinsert any branches from eliminated nodes while (reInsertList) { tempNode = reInsertList->m_node; for (int index = 0; index < tempNode->m_count; ++index) { InsertRect(&(tempNode->m_branch[index].m_rect), tempNode->m_branch[index].m_data, a_root, tempNode->m_level); } ListNode* remLNode = reInsertList; reInsertList = reInsertList->m_next; FreeNode(remLNode->m_node); FreeListNode(remLNode); } // Check for redundant root (not leaf, 1 child) and eliminate if ((*a_root)->m_count == 1 && (*a_root)->IsInternalNode()) { tempNode = (*a_root)->m_branch[0].m_child; ASSERT(tempNode); FreeNode(*a_root); *a_root = tempNode; } return false; } else { return true; } } // Delete a rectangle from non-root part of an index structure. // Called by RemoveRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. RTREE_TEMPLATE bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode) { ASSERT(a_rect && a_node && a_listNode); ASSERT(a_node->m_level >= 0); if (a_node->IsInternalNode()) // not a leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &(a_node->m_branch[index].m_rect))) { if (!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode)) { if (a_node->m_branch[index].m_child->m_count >= MINNODES) { // child removed, just resize parent rect a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child); } else { // child removed, not enough entries in node, eliminate node ReInsert(a_node->m_branch[index].m_child, a_listNode); DisconnectBranch(a_node, index); // Must return after this call as count has changed } return false; } } } return true; } else // A leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (a_node->m_branch[index].m_child == (Node*)a_id) { DisconnectBranch(a_node, index); // Must return after this call as count has changed return false; } } return true; } } // Decide whether two rectangles overlap. RTREE_TEMPLATE bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB) { ASSERT(a_rectA && a_rectB); for (int index = 0; index < NUMDIMS; ++index) { if (a_rectA->m_min[index] > a_rectB->m_max[index] || a_rectB->m_min[index] > a_rectA->m_max[index]) { return false; } } return true; } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. RTREE_TEMPLATE void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode) { ListNode* newListNode; newListNode = AllocListNode(); newListNode->m_node = a_node; newListNode->m_next = *a_listNode; *a_listNode = newListNode; } // Search in an index tree or subtree for all data retangles that overlap the argument rectangle. RTREE_TEMPLATE bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) { ASSERT(a_node); ASSERT(a_node->m_level >= 0); ASSERT(a_rect); if (a_node->IsInternalNode()) // This is an internal node in the tree { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) { if (!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context)) { return false; // Don't continue searching } } } } else // This is a leaf node { for (int index = 0; index < a_node->m_count; ++index) { if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) { DATATYPE& id = a_node->m_branch[index].m_data; // NOTE: There are different ways to return results. Here's where to modify if (&a_resultCallback) { ++a_foundCount; if (!a_resultCallback(id, a_context)) { return false; // Don't continue searching } } } } } return true; // Continue searching } #undef RTREE_TEMPLATE #undef RTREE_QUAL //------------------------------------------------------------- #define MERGE_INFINITY 1000000000 struct Rect { int min[2]; int max[2]; bool valid; }; int n; Rect rects[100000]; int hits[100000]; int hitsCount; int answer[100000]; int answerSize; RTree<int, int, 2, float> spatialIndex; int searchMin[2]; int searchMax[2]; int mergeMin[2]; int mergeMax[2]; bool searchCallback(int id, void* arg) { hits[hitsCount++] = id; return true; // keep going } void search(int index) { hitsCount = 0; Rect & r = rects[index]; searchMin[0] = r.min[0] + 1; searchMin[1] = r.min[1] + 1; searchMax[0] = r.max[0] - 1; searchMax[1] = r.max[1] - 1; spatialIndex.Search(searchMin, searchMax, searchCallback, NULL); } bool answerLessOperator(int i1, int i2) { Rect & r1 = rects[i1]; Rect & r2 = rects[i2]; if (r1.min[0] != r2.min[0]) return r1.min[0] < r2.min[0]; if (r1.max[0] != r2.max[0]) return r1.max[0] < r2.max[0]; if (r1.min[1] != r2.min[1]) return r1.min[1] < r2.min[1]; if (r1.max[1] != r2.max[1]) return r1.max[1] < r2.max[1]; return true; } int main() { int n; scanf("%d", &n); for (int i = 0; i < n; i++) { Rect & r = rects[i]; scanf("%d%d%d%d", r.min, r.max, r.min + 1, r.max + 1); r.min[0] <<= 1; r.min[1] <<= 1; r.max[0] <<= 1; r.max[1] <<= 1; r.valid = true; spatialIndex.Insert(r.min, r.max, i); } for (int i = 0; i < n; i++) { Rect & r = rects[i]; if (!r.valid) continue; search(i); if (hitsCount <= 1) continue; mergeMin[0] = MERGE_INFINITY; mergeMin[1] = MERGE_INFINITY; mergeMax[0] = -1; mergeMax[1] = -1; for (int si = 0; si < hitsCount; si++) { Rect & sr = rects[hits[si]]; if (sr.min[0] < mergeMin[0]) mergeMin[0] = sr.min[0]; if (sr.min[1] < mergeMin[1]) mergeMin[1] = sr.min[1]; if (sr.max[0] > mergeMax[0]) mergeMax[0] = sr.max[0]; if (sr.max[1] > mergeMax[1]) mergeMax[1] = sr.max[1]; sr.valid = false; spatialIndex.Remove(sr.min, sr.max, hits[si]); } r.min[0] = mergeMin[0]; r.min[1] = mergeMin[1]; r.max[0] = mergeMax[0]; r.max[1] = mergeMax[1]; r.valid = true; spatialIndex.Insert(r.min, r.max, i); i--; } answerSize = 0; for (int i = 0; i < n; i++) { if (rects[i].valid) answer[answerSize++] = i; } sort(answer, answer + answerSize, answerLessOperator); printf("%d\n", answerSize); for (int i = 0; i < answerSize; i++) { Rect & ar = rects[answer[i]]; printf("%d %d %d %d\n", ar.min[0] >> 1, ar.max[0] >> 1, ar.min[1] >> 1, ar.max[1] >> 1); } return 0; } |