#include <cstdio>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
struct City{
vector<int> neighbours;
int degree;
bool ok=true;
bool visited=false;
};
vector<City> cities;
vector<int> BFS(int start){
cities[start].visited = true;
vector<int> skladowa;
skladowa.push_back(start);
vector<int> stack;
stack.push_back(start);
while(!stack.empty()){
int f = stack.back();
stack.pop_back();
for(int n : cities[f].neighbours){
if(!cities[n].visited && cities[n].ok){
cities[n].visited = true;
stack.push_back(n);
skladowa.push_back(n);
}
}
}
return skladowa;
}
int main(){
int n,m,d;
scanf("%d%d%d",&n,&m,&d);
n+=1;
cities.resize(n);
for(int i=0;i<m;++i){
int a,b;
scanf("%d%d",&a,&b);
cities[a].neighbours.push_back(b);
cities[b].neighbours.push_back(a);
}
for(int i=0;i<n;++i){
cities[i].degree = cities[i].neighbours.size();
}
deque<int> citiesToRemove;
for(int i=0;i<n;++i){
if(cities[i].degree<d){
citiesToRemove.push_back(i);
cities[i].ok=false;
}
}
while(!citiesToRemove.empty()){
int current = citiesToRemove.front();
citiesToRemove.pop_front();
for(int ne : cities[current].neighbours){
cities[ne].degree-=1;
if(cities[ne].degree<d && cities[ne].ok){//if it's ok it wasn't queued for removal yet so do it
cities[ne].ok = false;
citiesToRemove.push_back(ne);
}
}
}
//we now have a graph having only edges with enough vertices
//find its biggest spójną składową
vector<int> biggest;
for(int i=0;i<n;++i){
if(cities[i].ok && !cities[i].visited){
vector<int> spojna = BFS(i);
if(spojna.size()>biggest.size()) biggest=spojna;
}
}
if(biggest.size()>0){
sort(biggest.begin(),biggest.end());
printf("%ld\n",biggest.size());
for(int i=0;i<biggest.size();++i) printf("%d ",biggest[i]);
puts("");
}else{
puts("NIE");
}
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #include <cstdio> #include <vector> #include <queue> #include <algorithm> using namespace std; struct City{ vector<int> neighbours; int degree; bool ok=true; bool visited=false; }; vector<City> cities; vector<int> BFS(int start){ cities[start].visited = true; vector<int> skladowa; skladowa.push_back(start); vector<int> stack; stack.push_back(start); while(!stack.empty()){ int f = stack.back(); stack.pop_back(); for(int n : cities[f].neighbours){ if(!cities[n].visited && cities[n].ok){ cities[n].visited = true; stack.push_back(n); skladowa.push_back(n); } } } return skladowa; } int main(){ int n,m,d; scanf("%d%d%d",&n,&m,&d); n+=1; cities.resize(n); for(int i=0;i<m;++i){ int a,b; scanf("%d%d",&a,&b); cities[a].neighbours.push_back(b); cities[b].neighbours.push_back(a); } for(int i=0;i<n;++i){ cities[i].degree = cities[i].neighbours.size(); } deque<int> citiesToRemove; for(int i=0;i<n;++i){ if(cities[i].degree<d){ citiesToRemove.push_back(i); cities[i].ok=false; } } while(!citiesToRemove.empty()){ int current = citiesToRemove.front(); citiesToRemove.pop_front(); for(int ne : cities[current].neighbours){ cities[ne].degree-=1; if(cities[ne].degree<d && cities[ne].ok){//if it's ok it wasn't queued for removal yet so do it cities[ne].ok = false; citiesToRemove.push_back(ne); } } } //we now have a graph having only edges with enough vertices //find its biggest spójną składową vector<int> biggest; for(int i=0;i<n;++i){ if(cities[i].ok && !cities[i].visited){ vector<int> spojna = BFS(i); if(spojna.size()>biggest.size()) biggest=spojna; } } if(biggest.size()>0){ sort(biggest.begin(),biggest.end()); printf("%ld\n",biggest.size()); for(int i=0;i<biggest.size();++i) printf("%d ",biggest[i]); puts(""); }else{ puts("NIE"); } } |
English