#include <algorithm> #include <iostream> #include <cassert> #include <cstdint> #include <limits> #include <vector> #include <map> using namespace std; using i64 = int64_t; i64 PeriodOfFibModuloPowerOf10(const int power) { i64 period = 1; if (power >= 1) period *= 60; if (power >= 2) period *= 5; if (power >= 3) period *= 5; for (int i = 4; i <= power; ++i) { period *= 10; } return period; } struct IntMod { IntMod() {} IntMod(i64 value, i64 modulo) : value_(value), modulo_(modulo) {} IntMod& operator+= (const IntMod& r) { assert(modulo_ == r.modulo_); const i64 sum = value_ + r.value_; value_ = sum % modulo_; overflow_ = overflow_ || r.overflow_ || sum != value_; return *this; } // Mnożenie cyfra po cyfrze, żeby uniknąć przekroczenia zakresu int64_t. IntMod operator* (const IntMod& r) const { if (value_ < 100000000ll && r.value_ < 100000000ll) { IntMod l_copy(*this); l_copy.RawMult(r); return l_copy; } i64 left = value_; IntMod sum(0, modulo_); IntMod right(r); while (left > 0) { IntMod component(right); component.RawMult(IntMod(left % 10, modulo_)); sum += component; // Mnożenie przez 10 może przekroczyć zakres int64_t. Mnożenie przez 1-9 // jest OK. right.RawMult(IntMod(2, modulo_)); right.RawMult(IntMod(5, modulo_)); left = left / 10; } return sum; } IntMod operator+ (const IntMod& r) const { IntMod result(*this); result += r; return result; } i64 value_ = 0, modulo_ = 0; bool overflow_ = false; private: IntMod& RawMult (const IntMod& r) { assert(modulo_ == r.modulo_); const i64 product = value_ * r.value_; // TODO: will overflow value_ = product % modulo_; overflow_ = overflow_ || r.overflow_ || product != value_; return *this; } }; struct Matrix { static const int kSize = 2; explicit Matrix(IntMod e) { m_[0][0] = e; m_[0][1] = e; m_[1][0] = e; m_[1][1] = e; } Matrix& operator=(const Matrix&) = default; Matrix operator* (const Matrix& b) { Matrix c(m_[0][0]); for (int i = 0; i < kSize; ++i) { for (int j = 0; j < kSize; ++j) { IntMod sum; for (int k = 0; k < kSize; ++k) { IntMod mult = m_[i][k] * b.m_[k][j]; if (k == 0) { sum = mult; } else { sum += mult; } } c.m_[i][j] = sum; } } return c; } IntMod m_[2][2]; private: Matrix(); }; // TODO: use fast algorithm. IntMod FibModulo(i64 n, i64 modulo) { IntMod a(0, modulo); IntMod b(1, modulo); for (i64 i = 0; i < n; ++i) { IntMod b_copy = b; b += a; a = b_copy; } return a; } IntMod FastFibModulo(i64 n, i64 modulo) { Matrix unit(IntMod(1, modulo)); unit.m_[1][1] = IntMod(0, modulo); Matrix product(IntMod(0, modulo)); product.m_[0][0] = IntMod(1, modulo); product.m_[1][1] = IntMod(1, modulo); while (n > 0) { if (n % 2 == 1) { product = product * unit; } unit = unit * unit; n >>= 1; } return product.m_[0][1]; } void solve(const string& suffix_string) { const i64 whole_suffix = strtoll(suffix_string.c_str(), nullptr, 10); const int number_of_digits = suffix_string.length(); // cout << "whole_suffix: " << whole_suffix << endl; // cout << "number_of_digits: " << number_of_digits << endl; i64 power_of_10 = 1; vector<i64> positions_in_cycle; positions_in_cycle.push_back(0); for (int digit = 1; digit <= number_of_digits; ++digit) { vector<i64> positions_in_bigger_cycle; power_of_10 *= 10; i64 small_period = PeriodOfFibModuloPowerOf10(digit - 1); i64 big_period = PeriodOfFibModuloPowerOf10(digit); i64 current_suffix = whole_suffix % power_of_10; // cout << "current_suffix: " << current_suffix << endl; for (i64 small_cycle = 0; small_cycle < big_period; small_cycle += small_period) { for (i64 pos_in_small_cycle : positions_in_cycle) { const i64 pos = small_cycle + pos_in_small_cycle; const IntMod fib = FastFibModulo(pos, power_of_10); if (fib.value_ == current_suffix) { positions_in_bigger_cycle.push_back(pos); // cout << "pos:" << pos << endl; if (digit == number_of_digits) { if (suffix_string[0] != '0' || number_of_digits == 1 || fib.overflow_) { cout << pos << endl; return; } } } } } positions_in_cycle.swap(positions_in_bigger_cycle); positions_in_bigger_cycle.clear(); } cout << "NIE" << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); /* for (int i = 0; i < 40; ++i) { cout << FastFibModulo(i, 10000000000).value_ << endl; } return 0; */ string suffix; while (cin >> suffix) { solve(suffix); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | #include <algorithm> #include <iostream> #include <cassert> #include <cstdint> #include <limits> #include <vector> #include <map> using namespace std; using i64 = int64_t; i64 PeriodOfFibModuloPowerOf10(const int power) { i64 period = 1; if (power >= 1) period *= 60; if (power >= 2) period *= 5; if (power >= 3) period *= 5; for (int i = 4; i <= power; ++i) { period *= 10; } return period; } struct IntMod { IntMod() {} IntMod(i64 value, i64 modulo) : value_(value), modulo_(modulo) {} IntMod& operator+= (const IntMod& r) { assert(modulo_ == r.modulo_); const i64 sum = value_ + r.value_; value_ = sum % modulo_; overflow_ = overflow_ || r.overflow_ || sum != value_; return *this; } // Mnożenie cyfra po cyfrze, żeby uniknąć przekroczenia zakresu int64_t. IntMod operator* (const IntMod& r) const { if (value_ < 100000000ll && r.value_ < 100000000ll) { IntMod l_copy(*this); l_copy.RawMult(r); return l_copy; } i64 left = value_; IntMod sum(0, modulo_); IntMod right(r); while (left > 0) { IntMod component(right); component.RawMult(IntMod(left % 10, modulo_)); sum += component; // Mnożenie przez 10 może przekroczyć zakres int64_t. Mnożenie przez 1-9 // jest OK. right.RawMult(IntMod(2, modulo_)); right.RawMult(IntMod(5, modulo_)); left = left / 10; } return sum; } IntMod operator+ (const IntMod& r) const { IntMod result(*this); result += r; return result; } i64 value_ = 0, modulo_ = 0; bool overflow_ = false; private: IntMod& RawMult (const IntMod& r) { assert(modulo_ == r.modulo_); const i64 product = value_ * r.value_; // TODO: will overflow value_ = product % modulo_; overflow_ = overflow_ || r.overflow_ || product != value_; return *this; } }; struct Matrix { static const int kSize = 2; explicit Matrix(IntMod e) { m_[0][0] = e; m_[0][1] = e; m_[1][0] = e; m_[1][1] = e; } Matrix& operator=(const Matrix&) = default; Matrix operator* (const Matrix& b) { Matrix c(m_[0][0]); for (int i = 0; i < kSize; ++i) { for (int j = 0; j < kSize; ++j) { IntMod sum; for (int k = 0; k < kSize; ++k) { IntMod mult = m_[i][k] * b.m_[k][j]; if (k == 0) { sum = mult; } else { sum += mult; } } c.m_[i][j] = sum; } } return c; } IntMod m_[2][2]; private: Matrix(); }; // TODO: use fast algorithm. IntMod FibModulo(i64 n, i64 modulo) { IntMod a(0, modulo); IntMod b(1, modulo); for (i64 i = 0; i < n; ++i) { IntMod b_copy = b; b += a; a = b_copy; } return a; } IntMod FastFibModulo(i64 n, i64 modulo) { Matrix unit(IntMod(1, modulo)); unit.m_[1][1] = IntMod(0, modulo); Matrix product(IntMod(0, modulo)); product.m_[0][0] = IntMod(1, modulo); product.m_[1][1] = IntMod(1, modulo); while (n > 0) { if (n % 2 == 1) { product = product * unit; } unit = unit * unit; n >>= 1; } return product.m_[0][1]; } void solve(const string& suffix_string) { const i64 whole_suffix = strtoll(suffix_string.c_str(), nullptr, 10); const int number_of_digits = suffix_string.length(); // cout << "whole_suffix: " << whole_suffix << endl; // cout << "number_of_digits: " << number_of_digits << endl; i64 power_of_10 = 1; vector<i64> positions_in_cycle; positions_in_cycle.push_back(0); for (int digit = 1; digit <= number_of_digits; ++digit) { vector<i64> positions_in_bigger_cycle; power_of_10 *= 10; i64 small_period = PeriodOfFibModuloPowerOf10(digit - 1); i64 big_period = PeriodOfFibModuloPowerOf10(digit); i64 current_suffix = whole_suffix % power_of_10; // cout << "current_suffix: " << current_suffix << endl; for (i64 small_cycle = 0; small_cycle < big_period; small_cycle += small_period) { for (i64 pos_in_small_cycle : positions_in_cycle) { const i64 pos = small_cycle + pos_in_small_cycle; const IntMod fib = FastFibModulo(pos, power_of_10); if (fib.value_ == current_suffix) { positions_in_bigger_cycle.push_back(pos); // cout << "pos:" << pos << endl; if (digit == number_of_digits) { if (suffix_string[0] != '0' || number_of_digits == 1 || fib.overflow_) { cout << pos << endl; return; } } } } } positions_in_cycle.swap(positions_in_bigger_cycle); positions_in_bigger_cycle.clear(); } cout << "NIE" << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); /* for (int i = 0; i < 40; ++i) { cout << FastFibModulo(i, 10000000000).value_ << endl; } return 0; */ string suffix; while (cin >> suffix) { solve(suffix); } } |