#include <cstdio> #include <iostream> #include <algorithm> #include <string> #include <vector> using namespace std; typedef vector<int> VI; typedef long long LL; typedef pair<int, int> PII; #define FOR(x, b, e) for (int x = b; x <= (e); ++x) #define FORD(x, b, e) for (int x = b; x >= (e); --x) #define REP(x, n) for (int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int) (x).size()) #define FOREACH(i, c) for (VAR(i, (c).begin()); i != (c).end(); ++i) #define PB push_back #define ST first #define ND second #define MP make_pair #define INF 1000000001 /** * Reprezentacja grafu oraz algorytmy grafowe na podstawie książki: * Piotr Stańczyk * "Algorytmika praktyczna Nie tylko dla mistrzów" * PWN 2009 */ template<class V, class E> struct Graph { // Represents Edges struct Ed : E { int v; Ed(E p, int w) : E(p), v(w) { } }; // Represents Vertices struct Ve : V, vector<Ed> { }; // vertices in graph vector<Ve> g; int d; // Paramert d z zadania // n - number of vertices in graph Graph(int dd, int n = 0) : g(n), d(dd) { } void EdgeD(int b, int e, E ed = E()) { g[b].PB(Ed(ed, e)); } // requires: // int E::rev; void EdgeU(int b, int e, E ed = E()) { Ed eg(ed, e); eg.rev = SIZE(g[e]) + (b == e); g[b].PB(eg); eg.rev = SIZE(g[eg.v = b]) - 1; g[e].PB(eg); } // time of entrance into vertex in recursive DFS algorithm int t; // DFS helper function: search sub tree of vertex v // requires: // int Graph<V, E>::t // int V::d // int V::f // int V::s void Dfs(int v, vector<int>& verts) { g[v].d = ++t; verts.PB(v); FOREACH(it, g[v]) if (g[it->v].d == -1 && !g[it->v].disabled) { g[it->v].s = v; Dfs(it->v, verts); } g[v].f = ++t; } void DisableVerts() { vector<int> qu(SIZE(g)); int b = 0, e = 0; REP(i, SIZE(g)) { g[i].deg = SIZE(g[i]); g[i].disabled = false; if (g[i].deg < d) { qu[e++] = i; g[i].disabled = true; } } while (b < e) { int i = qu[b++]; for (auto& ed : g[i]) { --(g[ed.v].deg); if (g[ed.v].deg < d && !g[ed.v].disabled) { qu[e++] = ed.v; g[ed.v].disabled = true; } } } } vector<int> FindBest() { t = -1; vector<int> ret, tmp; for (auto& v : g) v.d = v.f = v.s = -1; REP(x, SIZE(g)) if (g[x].s == -1 && !g[x].disabled) { tmp.clear(); Dfs(x, tmp); if (tmp.size() > ret.size()) swap(tmp, ret); } return ret; } }; struct Edge { int rev; }; struct Vert { int d, f, s; int cc; int deg; bool disabled; }; int main() { ios_base::sync_with_stdio(0); int n, m, d, a, b; cin >> n >> m >> d; Graph<Vert, Edge> g(d, n); REP(i, m) { cin >> a >> b; g.EdgeU(--a, --b); } g.DisableVerts(); vector<int> verts = g.FindBest(); if (verts.empty()) { cout << "NIE\n"; } else { sort(ALL(verts)); cout << verts.size() << "\n"; int i = 0; for (auto v : verts) { if (i > 0) cout << " "; cout << (v + 1); ++i; } cout << "\n"; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | #include <cstdio> #include <iostream> #include <algorithm> #include <string> #include <vector> using namespace std; typedef vector<int> VI; typedef long long LL; typedef pair<int, int> PII; #define FOR(x, b, e) for (int x = b; x <= (e); ++x) #define FORD(x, b, e) for (int x = b; x >= (e); --x) #define REP(x, n) for (int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int) (x).size()) #define FOREACH(i, c) for (VAR(i, (c).begin()); i != (c).end(); ++i) #define PB push_back #define ST first #define ND second #define MP make_pair #define INF 1000000001 /** * Reprezentacja grafu oraz algorytmy grafowe na podstawie książki: * Piotr Stańczyk * "Algorytmika praktyczna Nie tylko dla mistrzów" * PWN 2009 */ template<class V, class E> struct Graph { // Represents Edges struct Ed : E { int v; Ed(E p, int w) : E(p), v(w) { } }; // Represents Vertices struct Ve : V, vector<Ed> { }; // vertices in graph vector<Ve> g; int d; // Paramert d z zadania // n - number of vertices in graph Graph(int dd, int n = 0) : g(n), d(dd) { } void EdgeD(int b, int e, E ed = E()) { g[b].PB(Ed(ed, e)); } // requires: // int E::rev; void EdgeU(int b, int e, E ed = E()) { Ed eg(ed, e); eg.rev = SIZE(g[e]) + (b == e); g[b].PB(eg); eg.rev = SIZE(g[eg.v = b]) - 1; g[e].PB(eg); } // time of entrance into vertex in recursive DFS algorithm int t; // DFS helper function: search sub tree of vertex v // requires: // int Graph<V, E>::t // int V::d // int V::f // int V::s void Dfs(int v, vector<int>& verts) { g[v].d = ++t; verts.PB(v); FOREACH(it, g[v]) if (g[it->v].d == -1 && !g[it->v].disabled) { g[it->v].s = v; Dfs(it->v, verts); } g[v].f = ++t; } void DisableVerts() { vector<int> qu(SIZE(g)); int b = 0, e = 0; REP(i, SIZE(g)) { g[i].deg = SIZE(g[i]); g[i].disabled = false; if (g[i].deg < d) { qu[e++] = i; g[i].disabled = true; } } while (b < e) { int i = qu[b++]; for (auto& ed : g[i]) { --(g[ed.v].deg); if (g[ed.v].deg < d && !g[ed.v].disabled) { qu[e++] = ed.v; g[ed.v].disabled = true; } } } } vector<int> FindBest() { t = -1; vector<int> ret, tmp; for (auto& v : g) v.d = v.f = v.s = -1; REP(x, SIZE(g)) if (g[x].s == -1 && !g[x].disabled) { tmp.clear(); Dfs(x, tmp); if (tmp.size() > ret.size()) swap(tmp, ret); } return ret; } }; struct Edge { int rev; }; struct Vert { int d, f, s; int cc; int deg; bool disabled; }; int main() { ios_base::sync_with_stdio(0); int n, m, d, a, b; cin >> n >> m >> d; Graph<Vert, Edge> g(d, n); REP(i, m) { cin >> a >> b; g.EdgeU(--a, --b); } g.DisableVerts(); vector<int> verts = g.FindBest(); if (verts.empty()) { cout << "NIE\n"; } else { sort(ALL(verts)); cout << verts.size() << "\n"; int i = 0; for (auto v : verts) { if (i > 0) cout << " "; cout << (v + 1); ++i; } cout << "\n"; } return 0; } |