//Piotr Golda #include <iostream> #include <vector> #include <queue> #include <algorithm> #include <string> using namespace std; #define ULLD unsigned long long int #define UD unsigned int #define FIRSTAMOUNT 84 //count of first fibonacci numbers #define FLAG 18446744073709551615 ULLD fibonacci(ULLD n, UD k); vector<char> seq; // searched sequence ULLD FirstNums[FIRSTAMOUNT]; // first fibonacci numbers ULLD Bounds[18]; void scanAndInit() { string s; cin >> s; for (UD i = 0; i < s.length(); ++i) seq.push_back(s[i] - '0'); FirstNums[0] = 0; FirstNums[1] = 1; for (UD i = 2; i < FIRSTAMOUNT; ++i) { FirstNums[i] = FirstNums[i - 1] + FirstNums[i - 2]; } Bounds[0] = 60; Bounds[1] = 300; Bounds[2] = 1500; for (UD i = 3; i < 18; ++i) Bounds[i] = Bounds[i - 1] * 10L; } static inline UD fibDigits(ULLD p_num) { if (p_num == 0) return 1; if (p_num > 83) return 18; UD c = 0; ULLD num = FirstNums[p_num]; while (num>0) { c++; num /= 10L; } return c; } //searches for a kth from the end digit ULLD searchKth(UD p_k, ULLD p_step, ULLD p_fibNum, ULLD p_tenPow) { ULLD x; while (p_fibNum < Bounds[p_k]) { x = fibonacci(p_fibNum, p_k+1); x /= p_tenPow; // p_fibNum-th p_k-th digit from the end if ((char)x == seq[seq.size() - p_k - 1]) { if (p_k == seq.size() - 1) return p_fibNum; x = searchKth(p_k + 1, Bounds[p_k], p_fibNum, p_tenPow * 10L); if (x != FLAG) return x; } p_fibNum += p_step; } return FLAG; } void findNumber() { if (seq.size() == 1 && seq[0] == 0) { cout << 0 << endl; return; } ULLD x; x = searchKth(0, 1, 0, 1); if (x == FLAG) cout << "NIE" << endl; else { if (fibDigits(x) < seq.size()) { x += Bounds[seq.size() - 1]; } cout << x << endl; } } int main() { ios_base::sync_with_stdio(0); scanAndInit(); findNumber(); return 0; } /* ***************************************************************************** **********************k digits of n-th Fibonacci number********************** ***************************************************************************** */ static inline ULLD mulmod(ULLD a, ULLD b, ULLD m) { ULLD rv = 0; while (b) { if (b & 1) { rv += a; if (rv >= m) rv -= m; } a += a; if (a >= m) a -= m; b >>= 1; } return rv; } inline void fibmul(ULLD* f, ULLD* g, ULLD& modk) { ULLD tmp = (mulmod(f[0], g[0], modk) + mulmod(f[1], g[1], modk)) % modk; f[1] = (mulmod(f[0], g[1], modk) + mulmod(f[1], (g[0] + g[1])%modk, modk)) % modk; f[0] = tmp; } ULLD fibonacci(ULLD n, UD k) { ULLD modk = 1; while (k--) modk *= 10L; ULLD f[] = { 1, 0 }; ULLD g[] = { 0, 1 }; while (n > 0) { if (n & 1) // n odd { fibmul(f, g, modk); --n; } else { fibmul(g, g, modk); n >>= 1; } } return f[1]; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | //Piotr Golda #include <iostream> #include <vector> #include <queue> #include <algorithm> #include <string> using namespace std; #define ULLD unsigned long long int #define UD unsigned int #define FIRSTAMOUNT 84 //count of first fibonacci numbers #define FLAG 18446744073709551615 ULLD fibonacci(ULLD n, UD k); vector<char> seq; // searched sequence ULLD FirstNums[FIRSTAMOUNT]; // first fibonacci numbers ULLD Bounds[18]; void scanAndInit() { string s; cin >> s; for (UD i = 0; i < s.length(); ++i) seq.push_back(s[i] - '0'); FirstNums[0] = 0; FirstNums[1] = 1; for (UD i = 2; i < FIRSTAMOUNT; ++i) { FirstNums[i] = FirstNums[i - 1] + FirstNums[i - 2]; } Bounds[0] = 60; Bounds[1] = 300; Bounds[2] = 1500; for (UD i = 3; i < 18; ++i) Bounds[i] = Bounds[i - 1] * 10L; } static inline UD fibDigits(ULLD p_num) { if (p_num == 0) return 1; if (p_num > 83) return 18; UD c = 0; ULLD num = FirstNums[p_num]; while (num>0) { c++; num /= 10L; } return c; } //searches for a kth from the end digit ULLD searchKth(UD p_k, ULLD p_step, ULLD p_fibNum, ULLD p_tenPow) { ULLD x; while (p_fibNum < Bounds[p_k]) { x = fibonacci(p_fibNum, p_k+1); x /= p_tenPow; // p_fibNum-th p_k-th digit from the end if ((char)x == seq[seq.size() - p_k - 1]) { if (p_k == seq.size() - 1) return p_fibNum; x = searchKth(p_k + 1, Bounds[p_k], p_fibNum, p_tenPow * 10L); if (x != FLAG) return x; } p_fibNum += p_step; } return FLAG; } void findNumber() { if (seq.size() == 1 && seq[0] == 0) { cout << 0 << endl; return; } ULLD x; x = searchKth(0, 1, 0, 1); if (x == FLAG) cout << "NIE" << endl; else { if (fibDigits(x) < seq.size()) { x += Bounds[seq.size() - 1]; } cout << x << endl; } } int main() { ios_base::sync_with_stdio(0); scanAndInit(); findNumber(); return 0; } /* ***************************************************************************** **********************k digits of n-th Fibonacci number********************** ***************************************************************************** */ static inline ULLD mulmod(ULLD a, ULLD b, ULLD m) { ULLD rv = 0; while (b) { if (b & 1) { rv += a; if (rv >= m) rv -= m; } a += a; if (a >= m) a -= m; b >>= 1; } return rv; } inline void fibmul(ULLD* f, ULLD* g, ULLD& modk) { ULLD tmp = (mulmod(f[0], g[0], modk) + mulmod(f[1], g[1], modk)) % modk; f[1] = (mulmod(f[0], g[1], modk) + mulmod(f[1], (g[0] + g[1])%modk, modk)) % modk; f[0] = tmp; } ULLD fibonacci(ULLD n, UD k) { ULLD modk = 1; while (k--) modk *= 10L; ULLD f[] = { 1, 0 }; ULLD g[] = { 0, 1 }; while (n > 0) { if (n & 1) // n odd { fibmul(f, g, modk); --n; } else { fibmul(g, g, modk); n >>= 1; } } return f[1]; } |