#include <cstdio> #include <cstring> #include <utility> //#define YESNO_ONLY using namespace std; typedef unsigned long long ULL; const ULL MOD = 1000LL*1000*1000*1000*1000*1000; const ULL pow10[] = {\ 1LL,\ 10LL,\ 100LL,\ 1000LL,\ 10000LL,\ 100000LL,\ 1000000LL,\ 10000000LL,\ 100000000LL,\ 1000000000LL,\ 10000000000LL,\ 100000000000LL,\ 1000000000000LL,\ 10000000000000LL,\ 100000000000000LL,\ 1000000000000000LL,\ 10000000000000000LL,\ 100000000000000000LL,\ 1000000000000000000LL,\ }; const ULL cycLen[] = {\ 60LL,\ 300LL,\ 1500LL,\ 15000LL,\ 150000LL,\ 1500000LL,\ 15000000LL,\ 150000000LL,\ 1500000000LL,\ 15000000000LL,\ 150000000000LL,\ 1500000000000LL,\ 15000000000000LL,\ 150000000000000LL,\ 1500000000000000LL,\ 15000000000000000LL,\ 150000000000000000LL,\ 1500000000000000000LL,\ }; const ULL leadingZeroesFix = 1500000000000000000LL; int sufixSize; ULL sufix[30]={}; //################################################################ //Safe addition/multiplication modulo MOD: //################################################################ ULL add(ULL a, ULL b) { return (a+b)%MOD; } ULL mul(ULL a, ULL b) { ULL res = 0; while (a != 0) { if (a & 1) res = (res + b) % MOD; a >>= 1; b = (b << 1) % MOD; } return res; } //################################################################ //Calculating Fibonacci terms modulo MOD: //################################################################ struct matrix { ULL arr[2][2]; matrix() { arr[0][0] = 0; arr[0][1] = 0; arr[1][0] = 0; arr[1][1] = 0; } matrix(ULL a, ULL b, ULL c, ULL d) { arr[0][0] = a; arr[0][1] = b; arr[1][0] = c; arr[1][1] = d; } matrix(const matrix& other) { arr[0][0] = other.arr[0][0]; arr[0][1] = other.arr[0][1]; arr[1][0] = other.arr[1][0]; arr[1][1] = other.arr[1][1]; } void print() { printf(" | %llu %llu |\n | %llu %llu |\n", arr[0][0], arr[0][1], arr[1][0], arr[1][1]); } }; matrix operator+(matrix lhs, const matrix& rhs) { matrix res; res.arr[0][0] = add(lhs.arr[0][0], rhs.arr[0][0]); res.arr[0][1] = add(lhs.arr[0][1], rhs.arr[0][1]); res.arr[1][0] = add(lhs.arr[1][0], rhs.arr[1][0]); res.arr[1][1] = add(lhs.arr[1][1], rhs.arr[1][1]); return res; } matrix operator*(const matrix& lhs, const matrix& rhs) { matrix res; res.arr[0][0] = add(mul(lhs.arr[0][0], rhs.arr[0][0]), mul(lhs.arr[0][1], rhs.arr[1][0])); res.arr[0][1] = add(mul(lhs.arr[0][0], rhs.arr[0][1]), mul(lhs.arr[0][1], rhs.arr[1][1])); res.arr[1][0] = add(mul(lhs.arr[1][0], rhs.arr[0][0]), mul(lhs.arr[1][1], rhs.arr[1][0])); res.arr[1][1] = add(mul(lhs.arr[1][0], rhs.arr[0][1]), mul(lhs.arr[1][1], rhs.arr[1][1])); return res; } matrix power(matrix m, ULL p) { ULL curPow=1; matrix res(1,0,0,1); while (curPow <= p) { if ((curPow & p) != 0) { res = res * m; } m = m * m; curPow <<= 1; } return res; } ULL fib(ULL n) { matrix m(0, 1, 1, 1); matrix answ = power(m, n); return answ.arr[1][0]; } //################################################################ //Finding Fibonacci term with given suffix: //################################################################ void readInput() { char buf[30]; scanf("%s", buf); sufixSize = strlen(buf); for (int i=0; i<sufixSize; ++i) { sufix[sufixSize-i-1] = (ULL)(buf[i] - '0'); } } bool satisfiesDigit(const ULL fibVal, const int digit) { return ((fibVal/pow10[digit])%10) == sufix[digit]; } //If there exists a Fibonacci number with the lowest 5 digits equal to those requested, //then there is surely a Fibonacci number, which satisfies the whole request. (Proven empirically :P ) //This implies the existence of a satisfying limit on complexity of this dfs. pair<bool, ULL> dfs(const ULL fibId, const int digit) { if (digit >= sufixSize) return make_pair(true, fibId); ULL candidateId = fibId; ULL candidateVal; for (ULL i=0; i<cycLen[digit]/cycLen[digit-1]; ++i) { candidateVal = fib(candidateId); if (satisfiesDigit(candidateVal, digit)) { pair<bool, ULL> res = dfs(candidateId, digit+1); if (res.first == true) return res; } candidateId += cycLen[digit-1]; } return make_pair(false, 0); } //################################################################ //Extras for correctness checking: //################################################################ bool checkIfSatisfies(ULL fibId) { if (fibId < 90) return false; //It throws away some correct answers, but ensures the leading zeroes are handled properly ULL fibVal = fib(fibId); for (int i=0; i<sufixSize; ++i) { if (fibVal%10 != sufix[i]) return false; fibVal/=10; } return true; } int main() { // ULL c; // scanf("%llu", &c); // printf("Fib(%llu) mod %llu = %llu\n", c, MOD, fib(c)); readInput(); // printf("sufixSize = %d\n", sufixSize); // for (int i=sufixSize-1; i>=0; --i) // printf("sufix[%d] = %llu\n", i, sufix[i]); // printf("\n"); // for (ULL fibId=0; fibId<cycLen[0]; ++fibId) { ULL fibVal = fib(fibId); if (!satisfiesDigit(fibVal, 0)) continue; pair<bool, ULL> res = dfs(fibId, 1); if (res.first == true) { #ifndef YESNO_ONLY printf("%llu\n", res.second + leadingZeroesFix); #endif #ifdef YESNO_ONLY printf("TAK\n"); #endif // printf("final check: %s\n", (checkIfSatisfies(res.second + leadingZeroesFix) ? "correct" : "wrong")); return 0; } } printf("NIE\n"); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | #include <cstdio> #include <cstring> #include <utility> //#define YESNO_ONLY using namespace std; typedef unsigned long long ULL; const ULL MOD = 1000LL*1000*1000*1000*1000*1000; const ULL pow10[] = {\ 1LL,\ 10LL,\ 100LL,\ 1000LL,\ 10000LL,\ 100000LL,\ 1000000LL,\ 10000000LL,\ 100000000LL,\ 1000000000LL,\ 10000000000LL,\ 100000000000LL,\ 1000000000000LL,\ 10000000000000LL,\ 100000000000000LL,\ 1000000000000000LL,\ 10000000000000000LL,\ 100000000000000000LL,\ 1000000000000000000LL,\ }; const ULL cycLen[] = {\ 60LL,\ 300LL,\ 1500LL,\ 15000LL,\ 150000LL,\ 1500000LL,\ 15000000LL,\ 150000000LL,\ 1500000000LL,\ 15000000000LL,\ 150000000000LL,\ 1500000000000LL,\ 15000000000000LL,\ 150000000000000LL,\ 1500000000000000LL,\ 15000000000000000LL,\ 150000000000000000LL,\ 1500000000000000000LL,\ }; const ULL leadingZeroesFix = 1500000000000000000LL; int sufixSize; ULL sufix[30]={}; //################################################################ //Safe addition/multiplication modulo MOD: //################################################################ ULL add(ULL a, ULL b) { return (a+b)%MOD; } ULL mul(ULL a, ULL b) { ULL res = 0; while (a != 0) { if (a & 1) res = (res + b) % MOD; a >>= 1; b = (b << 1) % MOD; } return res; } //################################################################ //Calculating Fibonacci terms modulo MOD: //################################################################ struct matrix { ULL arr[2][2]; matrix() { arr[0][0] = 0; arr[0][1] = 0; arr[1][0] = 0; arr[1][1] = 0; } matrix(ULL a, ULL b, ULL c, ULL d) { arr[0][0] = a; arr[0][1] = b; arr[1][0] = c; arr[1][1] = d; } matrix(const matrix& other) { arr[0][0] = other.arr[0][0]; arr[0][1] = other.arr[0][1]; arr[1][0] = other.arr[1][0]; arr[1][1] = other.arr[1][1]; } void print() { printf(" | %llu %llu |\n | %llu %llu |\n", arr[0][0], arr[0][1], arr[1][0], arr[1][1]); } }; matrix operator+(matrix lhs, const matrix& rhs) { matrix res; res.arr[0][0] = add(lhs.arr[0][0], rhs.arr[0][0]); res.arr[0][1] = add(lhs.arr[0][1], rhs.arr[0][1]); res.arr[1][0] = add(lhs.arr[1][0], rhs.arr[1][0]); res.arr[1][1] = add(lhs.arr[1][1], rhs.arr[1][1]); return res; } matrix operator*(const matrix& lhs, const matrix& rhs) { matrix res; res.arr[0][0] = add(mul(lhs.arr[0][0], rhs.arr[0][0]), mul(lhs.arr[0][1], rhs.arr[1][0])); res.arr[0][1] = add(mul(lhs.arr[0][0], rhs.arr[0][1]), mul(lhs.arr[0][1], rhs.arr[1][1])); res.arr[1][0] = add(mul(lhs.arr[1][0], rhs.arr[0][0]), mul(lhs.arr[1][1], rhs.arr[1][0])); res.arr[1][1] = add(mul(lhs.arr[1][0], rhs.arr[0][1]), mul(lhs.arr[1][1], rhs.arr[1][1])); return res; } matrix power(matrix m, ULL p) { ULL curPow=1; matrix res(1,0,0,1); while (curPow <= p) { if ((curPow & p) != 0) { res = res * m; } m = m * m; curPow <<= 1; } return res; } ULL fib(ULL n) { matrix m(0, 1, 1, 1); matrix answ = power(m, n); return answ.arr[1][0]; } //################################################################ //Finding Fibonacci term with given suffix: //################################################################ void readInput() { char buf[30]; scanf("%s", buf); sufixSize = strlen(buf); for (int i=0; i<sufixSize; ++i) { sufix[sufixSize-i-1] = (ULL)(buf[i] - '0'); } } bool satisfiesDigit(const ULL fibVal, const int digit) { return ((fibVal/pow10[digit])%10) == sufix[digit]; } //If there exists a Fibonacci number with the lowest 5 digits equal to those requested, //then there is surely a Fibonacci number, which satisfies the whole request. (Proven empirically :P ) //This implies the existence of a satisfying limit on complexity of this dfs. pair<bool, ULL> dfs(const ULL fibId, const int digit) { if (digit >= sufixSize) return make_pair(true, fibId); ULL candidateId = fibId; ULL candidateVal; for (ULL i=0; i<cycLen[digit]/cycLen[digit-1]; ++i) { candidateVal = fib(candidateId); if (satisfiesDigit(candidateVal, digit)) { pair<bool, ULL> res = dfs(candidateId, digit+1); if (res.first == true) return res; } candidateId += cycLen[digit-1]; } return make_pair(false, 0); } //################################################################ //Extras for correctness checking: //################################################################ bool checkIfSatisfies(ULL fibId) { if (fibId < 90) return false; //It throws away some correct answers, but ensures the leading zeroes are handled properly ULL fibVal = fib(fibId); for (int i=0; i<sufixSize; ++i) { if (fibVal%10 != sufix[i]) return false; fibVal/=10; } return true; } int main() { // ULL c; // scanf("%llu", &c); // printf("Fib(%llu) mod %llu = %llu\n", c, MOD, fib(c)); readInput(); // printf("sufixSize = %d\n", sufixSize); // for (int i=sufixSize-1; i>=0; --i) // printf("sufix[%d] = %llu\n", i, sufix[i]); // printf("\n"); // for (ULL fibId=0; fibId<cycLen[0]; ++fibId) { ULL fibVal = fib(fibId); if (!satisfiesDigit(fibVal, 0)) continue; pair<bool, ULL> res = dfs(fibId, 1); if (res.first == true) { #ifndef YESNO_ONLY printf("%llu\n", res.second + leadingZeroesFix); #endif #ifdef YESNO_ONLY printf("TAK\n"); #endif // printf("final check: %s\n", (checkIfSatisfies(res.second + leadingZeroesFix) ? "correct" : "wrong")); return 0; } } printf("NIE\n"); return 0; } |