///Implementacja grafu z "Algorytmiki Praktycznej" Piotra Stanczyka #include <cstdio> //#include <iostream> #include <algorithm> //#include <string> #include <vector> //#include <complex> //#include <iterator> //#include <set> //#include <bitset> //#include <map> //#include <stack> //#include <list> //#include <queue> //#include <deque> using namespace std; typedef vector<int> VI; typedef long long LL; #define FOR(x, b, e) for(int x = b; x <= (e); ++x) #define FORD(x, b, e) for(int x = b; x >= (e); --x) #define REP(x, n) for(int x = 0; x < (n); ++x) #define VAR(v, n) typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FOREACH(i, c) for(i=(c).begin(); i !=(c).end(); ++i) #define FORE(i, c) for(VAR(i, (c).begin()), KS=(c).end(); i !=KS; ++i) #define PB push_back #define ST first #define ND second const int INF = 1000000001; const double EPS = 10e-9; typedef vector<VI> VVI; typedef vector<LL> VLL; typedef vector<double> VD; //typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; #define PF push_front #define MP make_pair struct tri { int a,b,c; tri(int k=0,int l=0,int m=0) { a=k; b=l; c=m; } }; template <class V, class E> struct Graph { struct Ed : E { int v; Ed(E p=E(), int w=0) : E(p), v(w) { } }; struct Ve : V, vector<Ed> { }; vector<Ve> g; Graph(int n = 0) : g(n) { } void EdgeD(int b, int e, E d = E()) { g[b].PB(Ed(d, e)); } void EdgeU(int b, int e, E d = E()) { Ed eg(d, e); g[b].PB(eg); eg.v = b; g[e].PB(eg); } /*void Write() { REP(x, SIZE(g)) { cout << x << ":"; FOREACH(it, g[x]) cout << " " << it->v; cout <<" "<<g[x].z<< endl; } }*/ void Bfs(int d) { int qu[SIZE(g)], b=0, e=0,s; typename vector<Ve>::iterator it; typename vector<Ed>::iterator it2; FOREACH(it,g) { it->z=(*it).size(); if(it->z<d) { qu[e++]=it-g.begin(); it->z=0; } } while (b < e) { s = qu[b++]; FOREACH(it2, g[s]) if (g[it2->v].z == d) { qu[e++] = it2->v; g[it2->v].z = 0; } else if(g[it2->v].z) --g[it2->v].z; } } void zer() { typename vector<Ve>::iterator it; FOREACH(it,g) it->z=0; } int Bfs2(int s,int l) { if(g[s].z) return 0; int qu[SIZE(g)], b=0, e=1; qu[0]=s; g[s].z=l; typename vector<Ed>::iterator it2; while(b<e) { s=qu[b++]; FOREACH(it2, g[s]) { if(!g[it2->v].z) { g[it2->v].z=l; qu[e++] = it2->v; } } } return e; } bool istnienia(Ed ed) { return ed.v; } template <class FI> FI myremove_if (FI first, FI last) { FI result = first; while (first!=last) { if (istnienia(*first)) { *result = *first; ++result; } ++first; } return result; } void usun() { typename vector<Ve>::iterator it; typename vector<Ed>::iterator it2; FOREACH(it,g) if(it->z==0) (*it).clear(); else FOREACH(it2,*it) if(g[it2->v].z==0) it2->v=0; FOREACH(it,g) (*it).resize(myremove_if(ALL(*it))-(*it).begin()); } void pr(int im) { REP(i,SIZE(g)) if(g[i].z==im) printf("%d ",i); } }; struct vv {int z;}; struct ee{}; int main() { int i,n,m,d,x,y,b,bm=0,im; scanf("%d%d%d",&n,&m,&d); Graph<vv,ee> gr(n+1); while(m--) { scanf("%d%d",&x,&y); gr.EdgeU(x,y); } gr.Bfs(d); // gr.Write(); gr.usun(); // gr.Write(); gr.zer(); for(i=1;i<=n;++i) if((b=gr.Bfs2(i,i)) && (b>bm)) { bm=b; im=i; } if(bm>1) { printf("%d\n",bm); gr.pr(im); } else printf("NIE"); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | ///Implementacja grafu z "Algorytmiki Praktycznej" Piotra Stanczyka #include <cstdio> //#include <iostream> #include <algorithm> //#include <string> #include <vector> //#include <complex> //#include <iterator> //#include <set> //#include <bitset> //#include <map> //#include <stack> //#include <list> //#include <queue> //#include <deque> using namespace std; typedef vector<int> VI; typedef long long LL; #define FOR(x, b, e) for(int x = b; x <= (e); ++x) #define FORD(x, b, e) for(int x = b; x >= (e); --x) #define REP(x, n) for(int x = 0; x < (n); ++x) #define VAR(v, n) typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FOREACH(i, c) for(i=(c).begin(); i !=(c).end(); ++i) #define FORE(i, c) for(VAR(i, (c).begin()), KS=(c).end(); i !=KS; ++i) #define PB push_back #define ST first #define ND second const int INF = 1000000001; const double EPS = 10e-9; typedef vector<VI> VVI; typedef vector<LL> VLL; typedef vector<double> VD; //typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; #define PF push_front #define MP make_pair struct tri { int a,b,c; tri(int k=0,int l=0,int m=0) { a=k; b=l; c=m; } }; template <class V, class E> struct Graph { struct Ed : E { int v; Ed(E p=E(), int w=0) : E(p), v(w) { } }; struct Ve : V, vector<Ed> { }; vector<Ve> g; Graph(int n = 0) : g(n) { } void EdgeD(int b, int e, E d = E()) { g[b].PB(Ed(d, e)); } void EdgeU(int b, int e, E d = E()) { Ed eg(d, e); g[b].PB(eg); eg.v = b; g[e].PB(eg); } /*void Write() { REP(x, SIZE(g)) { cout << x << ":"; FOREACH(it, g[x]) cout << " " << it->v; cout <<" "<<g[x].z<< endl; } }*/ void Bfs(int d) { int qu[SIZE(g)], b=0, e=0,s; typename vector<Ve>::iterator it; typename vector<Ed>::iterator it2; FOREACH(it,g) { it->z=(*it).size(); if(it->z<d) { qu[e++]=it-g.begin(); it->z=0; } } while (b < e) { s = qu[b++]; FOREACH(it2, g[s]) if (g[it2->v].z == d) { qu[e++] = it2->v; g[it2->v].z = 0; } else if(g[it2->v].z) --g[it2->v].z; } } void zer() { typename vector<Ve>::iterator it; FOREACH(it,g) it->z=0; } int Bfs2(int s,int l) { if(g[s].z) return 0; int qu[SIZE(g)], b=0, e=1; qu[0]=s; g[s].z=l; typename vector<Ed>::iterator it2; while(b<e) { s=qu[b++]; FOREACH(it2, g[s]) { if(!g[it2->v].z) { g[it2->v].z=l; qu[e++] = it2->v; } } } return e; } bool istnienia(Ed ed) { return ed.v; } template <class FI> FI myremove_if (FI first, FI last) { FI result = first; while (first!=last) { if (istnienia(*first)) { *result = *first; ++result; } ++first; } return result; } void usun() { typename vector<Ve>::iterator it; typename vector<Ed>::iterator it2; FOREACH(it,g) if(it->z==0) (*it).clear(); else FOREACH(it2,*it) if(g[it2->v].z==0) it2->v=0; FOREACH(it,g) (*it).resize(myremove_if(ALL(*it))-(*it).begin()); } void pr(int im) { REP(i,SIZE(g)) if(g[i].z==im) printf("%d ",i); } }; struct vv {int z;}; struct ee{}; int main() { int i,n,m,d,x,y,b,bm=0,im; scanf("%d%d%d",&n,&m,&d); Graph<vv,ee> gr(n+1); while(m--) { scanf("%d%d",&x,&y); gr.EdgeU(x,y); } gr.Bfs(d); // gr.Write(); gr.usun(); // gr.Write(); gr.zer(); for(i=1;i<=n;++i) if((b=gr.Bfs2(i,i)) && (b>bm)) { bm=b; im=i; } if(bm>1) { printf("%d\n",bm); gr.pr(im); } else printf("NIE"); return 0; } |