1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
ll mult(ll a, ll b, ll m)
{
    if(b==0) return 0;
    if(b%2==0) return mult(2*a%m, b/2, m);
    return (mult(2*a%m, b/2, m)+a)%m;
}
struct Matrix //Yay! Macierze!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
{
    ll t[2][2]; //Tak, naprawde
};
Matrix mult(Matrix a, Matrix b, ll m)
{
    Matrix res;
    for(int i=0; i<2; ++i) for(int j=0; j<2; ++j) res.t[i][j]=0;
    for(int i=0; i<2; ++i)
        for(int k=0; k<2; ++k)
            for(int j=0; j<2; ++j)
                res.t[i][j]=(res.t[i][j]+mult(a.t[i][k], b.t[k][j], m))%m;
    return res;
}
const Matrix identity()
{
    Matrix res;
    res.t[1][0]=res.t[0][1]=0;
    res.t[0][0]=res.t[1][1]=1;
    return res;
}
Matrix pow(Matrix a, ll n, ll m)
{
    if(n==0) return identity();
    if(n%2==0) return pow(mult(a, a, m), n/2, m);
    return mult(pow(mult(a, a, m), n/2, m), a, m);
}
ll fibonacci(ll n, ll m)
{
    Matrix mat;
    mat.t[0][0]=0;
    mat.t[0][1]=mat.t[1][0]=mat.t[1][1]=1;
    return pow(mat, n, m).t[0][1];
}
char s[20];
int num_2[1LL<<18], num_2a[1LL<<18];
void init(int n)
{
    for(int i=1; i<(1LL<<(n)); ++i) num_2a[i]=-1;
    int a=0, b=1;
    for(int i=1; i<(1LL<<(n-1))*3; ++i)
    {
        swap(a, b);
        b=(a+b)%(1LL<<n);
        if(num_2[a]==0) num_2[a]=i;
        else num_2a[a]=i;
    }
}
ll period(int n)
{
    ll tmp=1;
    if(n==1) return 60;
    if(n==2) return 300;
    while(n--) tmp*=10;
    return 3*tmp/2;
}
ll period2(int n)
{
    if(n==1) return 3;
    if(n==2) return 6;
    return (1LL<<(n-1))*3;
}
int main()
{
    scanf("%s", s);
    int n=strlen(s);
    ll value=0;
    for(int i=0; i<n; ++i)
    {
        value*=10;
        value+=s[i]-'0';
    }
    if(n<=2)
    {
        ll a=0, b=1, i=2;
        bool hi=0;
        ll m=1;
        while(n--) m*=10;
        for(;i<1000; ++i)
        {
            swap(a, b);
            if(a+b>=m) hi=1;
            b=(a+b)%m;
            if(hi&&b==value%m) break;
        }
        if(i==1000) printf("NIE\n");
        else
            printf("%lld", i);
            //printf("TAK\n");
        return 0;
    }
    init(n);
    if(value==0)
    {
        printf("%lld", period(n));
        //printf("TAK\n");
        return 0;
    }
    if(num_2[value%(1LL<<n)]==0)
    {
        printf("NIE\n");
        return 0;
    }
    ll m=5, m10=10;
    ll res[4], res1[4];
    int j=0;
    for(int i=0; i<20; ++i) if(fibonacci(i, 5)==value%5) res[j++]=i;
    for(int i1=1; i1<n; ++i1)
    {
        m*=5;
        m10*=10;
        j=0;
        for(int i=0; i<4; ++i) for(ll k=res[i]; k<4*m; k+=4*m/5)
            if(fibonacci(k, m)==value%m) res1[j++]=k;
        for(int i=0; i<4; ++i) res[i]=res1[i];
    }
    for(j=0; j<4; ++j)
    {
        for(; res[j]%period2(n)!=num_2[value%(1LL<<n)]&&res[j]%period2(n)!=num_2a[value%(1LL<<n)]&&res[j]<period(n); res[j]+=4*m);
        if(fibonacci(res[j], m10)==value) printf("%lld", res[j]+period(n));
        //if(res[j]%period2(n)!=num_2[value%(1LL<<n)]) printf("TAK\n");
        if(fibonacci(res[j], m10)==value) return 0;
    }
    return 0;
}
/*
864
1386
2364
2886
3864
4386
5364
5886
6864
7386
8364
8886
9864
*/