1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <sstream>
#include <set>
#include <map>
#include <vector>
#include <list>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <bitset>		//UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic
#include <cassert>
#include <iomanip>		//do setprecision
#include <ctime>
#include <complex>
using namespace std;

//#include<intrin.h>

#define FOR(i,b,e) for(int i=(b);i<(e);++i)
#define FORQ(i,b,e) for(int i=(b);i<=(e);++i)
#define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i)
#define REP(x, n) for(int x = 0; x < (n); ++x)

#define ST first
#define ND second
#define PB push_back
#define MP make_pair
#define LL long long
#define ULL unsigned LL
#define LD long double

const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342;

#define MR 1000010

int t[MR];
LL res[MR];
char s[MR];

bool done[MR];

vector < int > S;

int b, m;

const int inf = 1e9;
const int N = 2e6 + 10;  // limit for array size
int n;  // array size
int tree[2 * N];
int d[N];
int h;

void apply(int p, int value, int *t) {
  t[p] += value;
  if (p < n) d[p] += value;
}

void build(int p, int *t) {
  while (p > 1) p >>= 1, t[p] = min(t[p<<1], t[p<<1|1]) + d[p];
}

void push(int p, int *t) {
  for (int s = h; s > 0; --s) {
    int i = p >> s;
    if (d[i] != 0) {
      apply(i<<1, d[i], t);
      apply(i<<1|1, d[i], t);
      d[i] = 0;
    }
  }
}

void inc(int l, int r, int value, int *t) {
  l += n, r += n;
  int l0 = l, r0 = r;
  for (; l < r; l >>= 1, r >>= 1) {
    if (l&1) apply(l++, value, t);
    if (r&1) apply(--r, value, t);
  }
  build(l0, t);
  build(r0 - 1, t);
}

int query(int l, int r, int *t) {
  l += n, r += n;
  push(l, t);
  push(r - 1, t);
  int res = inf;
  for (; l < r; l >>= 1, r >>= 1) {
    if (l&1) res = min(res, t[l++]);
    if (r&1) res = min(t[--r], res);
  }
  return res;
}

int BSL(int p, int k, int v, int *t)
{
	while(p+1 < k)
	{
		int w = (p+k)/2;
		if(query(p,w, t) <= v) k = w;
		else p = w;
	}

	return p;
}

int main()
{
	scanf("%d", &b);
	REP(i,b) scanf("%d", &t[i]);
	scanf("%d%s", &m, s);
	REP(i,m)
	{
		if(!done[i])
		{
			int j = i;
			while(true)
			{
				S.PB(j);
				done[j] = 1;
				j = (j+b)%m;
				if(done[j]) break;
			}

			// zbuduj drzewo
			int sum = 0;
			n = 2*S.size()-1;
			h = sizeof(int) * 8 - __builtin_clz(n);
			REP(i,n)
			{
				if(i < (int)S.size())
				{
					sum += s[S[i]] == 'W' ? 1 : -1;
					*(tree + n + i) = sum;
				}
				else  *(tree + n + i) = 0;
				build(n+i, tree);
			}

			int p = 0, k = S.size();
			while(p < (int)S.size())
			{
				int minv = query(p,k,tree);

				int c = S[p];
				while(c < b)
				{
					// zobacz czy od razu nie da sie zalatwic
					if(-minv >= t[c])
					{
						res[c] = BSL(p, k, -t[c], tree) + 1 - p;
					}
					else
					{
						// czy okrazajac cykl zejdziemy ponizej 0
						if(sum < 0)
						{
							//assert(minv <= sum);
							// ile razy cykl musimy okrazyc - uwzgledniajac ze za jednym okrazeniem mozemy zbic max minv
							int ile = t[c] + minv;
							int ileC = ile/(-sum);
							if(ile%(-sum)) ileC++;
							//assert(ileC > 0);
							ile = t[c] + ileC*sum;
							//assert(ile >= 0 && ile <= -minv);
							res[c] += ileC*(LL)S.size();
							res[c] += BSL(p, k, -ile, tree) + 1 - p;
						}
						else res[c] = -2;
					}
					c += m;
				}
				inc(p, k, s[S[p]] == 'W' ? -1 : 1, tree);
				inc(k, k+1, sum, tree);
				p++; k++;
			}

			REP(i,n) d[i] = 0;
			S.clear();
		}
	}
	LL mn = inf*(LL)inf;
	REP(i,b)
		if(res[i] > 0) mn = min(mn, res[i]);

	if(mn == inf*(LL)inf) printf("-1\n");
	else
	{
		LL finalRes = 0;
		LL initial = mn;
		REP(i,b)
		{
			finalRes += mn;
			if(res[i] == mn)
			{
				mn--;
			}
		}
		//assert(mn == initial-1);
		printf("%lld\n", finalRes);
	}
	return 0;
}