// Uzylem struktury danych RMQ ze strony: http://codeforces.com/blog/entry/15169 #include <bits/stdc++.h> using namespace std; #define PB push_back #define FORE(i, t) for(__typeof(t.begin())i=t.begin();i!=t.end();++i) #define SZ(x) int((x).size()) #define REP(i, n) for(int i=0,_=(n);i<_;++i) #define FOR(i, a, b) for(int i=(a),_=(b);i<=_;++i) #define FORD(i, a, b) for(int i=(a),_=(b);i>=_;--i) typedef long long ll; typedef vector<int> vi; typedef pair<int, int> pii; const ll LLINF = (ll) 3e18 + 9; const int INF = 1e9 + 9; const int MAX_N = 1e6 + 3; const int MAX_M = 1e6 + 3; struct RMQ { int N; vi a; void init(int n) { int lgn = 0; for (int x = n; x > 0; x /= 2) { ++lgn; } N = 1 << (lgn + 1); a.resize(N * 2); REP(i, N * 2) { a[i] = INF; } } void init(const vi &v) { this->init(SZ(v)); REP(i, SZ(v)) { this->SetMin(i, v[i]); } } void SetMin(int pos, int x) { for (int i = pos + N; i; i >>= 1) a[i] = min(a[i], x); } int GetMin(int L, int R) const // [L, R) i.e. L <= i < R { int res = INF; for (L += N, R += N; L < R; L >>= 1, R >>= 1) { if (L & 1) { res = min(res, a[L]); L++; } if (R & 1) { R--; res = min(res, a[R]); } } return res; } }; int n, m; int money[MAX_N]; char deltas[MAX_M]; vi cycles[MAX_M]; int cycle_id[MAX_M]; int cycle_start[MAX_M]; vi cycles_sums[MAX_M]; RMQ rmqs[MAX_M]; int cycle_min_sum_pos[MAX_M]; int cycles_count = 0; void generate_cycles() { REP (i, m) { if (cycle_id[i] == -1) { ++cycles_count; for (int j = i, pos = 0; ; j = (j + n) % m, ++pos) { if (!cycles[i].empty()) { if (cycles[i][0] == j) { break; } } cycles[i].PB(j); cycle_id[j] = i; cycle_start[j] = pos; } } } FOR (i, m, n) { cycle_id[i] = cycle_id[i % m]; cycle_start[i] = cycle_start[i % m]; } REP (i, cycles_count) { // printf("icc=%d\n", i); int cycle_size = SZ(cycles[i]); int sum = 0; cycles_sums[i].PB(sum); // puts("aaa"); REP (j, 2 * cycle_size) { int delta = deltas[cycles[i][j % cycle_size]] == 'W' ? 1 : -1; sum += delta; cycles_sums[i].PB(sum); } // puts("bbb"); // printf("szcycles=%d\n", SZ(cycles_sums[i])); int min_el = *min_element(cycles_sums[i].begin(), cycles_sums[i].begin() + cycle_size + 1); REP (j, cycle_size + 1) { if (cycles_sums[i][j] == min_el) { cycle_min_sum_pos[i] = j; break; } } // puts("ccc"); rmqs[i].init(cycles_sums[i]); // puts("ddd"); } } ll compute_when(int x) { int cid = cycle_id[x]; // printf("a=%d\n", x); // printf(" cid=%d cstart=%d cs_at_start=%d\n", cid, cycle_start[x], cycles_sums[cid][cycle_start[x]]); int money_from_min_pos = money[x] - cycles_sums[cid][cycle_start[x]] + cycles_sums[cid][cycle_min_sum_pos[cid]]; int cycle_delta = cycles_sums[cid][SZ(cycles[cid])]; // printf(" cycle_delta=%d\n", cycle_delta); int how_many_cycles = -1; if (money_from_min_pos > 0) { if (cycle_delta >= 0) { //TODO return LLINF; } else { how_many_cycles = money_from_min_pos / (-cycle_delta); if (money_from_min_pos % (-cycle_delta) == 0) { --how_many_cycles; } } } int last_safe_pos; int money_at_last_safe_post; if (how_many_cycles >= 0) { last_safe_pos = cycle_min_sum_pos[cid]; money_at_last_safe_post = money_from_min_pos + cycle_delta * how_many_cycles; } else { last_safe_pos = cycle_start[x]; money_at_last_safe_post = money[x]; } // printf(" last_safe_pos=%d\n", last_safe_pos); int a = last_safe_pos, b = SZ(cycles_sums[cid]) * 2; while (a <= b) { int d = (a + b) / 2; int spend = cycles_sums[cid][last_safe_pos] - rmqs[cid].GetMin(last_safe_pos, d + 1); if (spend < money_at_last_safe_post) { a = d + 1; } else { b = d - 1; } } ll bankrupt_relative_pos = a - last_safe_pos - 1; ll bankrupt_abs_pos = -1; if (how_many_cycles >= 0) { // printf("%d - %d + %d * %d + %lld\n", cycle_min_sum_pos[cid], cycle_start[x], how_many_cycles, SZ(cycles[cid]), bankrupt_relative_pos); bankrupt_abs_pos = cycle_min_sum_pos[cid] - cycle_start[x] + (ll) how_many_cycles * (ll) SZ(cycles[cid]) + bankrupt_relative_pos; } else { bankrupt_abs_pos = bankrupt_relative_pos; } // printf(" mfmp=%d hmc=%d bankrupt_rel=%d bankrupt_abs=%d\n", // money_from_min_pos, how_many_cycles, bankrupt_relative_pos, bankrupt_abs_pos); // printf("x+1=%lld n=%lld bank=%lld\n", (ll) (x + 1), (ll) n, (ll) bankrupt_abs_pos); return (ll) (x + 1) + (ll) n * (ll) bankrupt_abs_pos; // printf(" -> when=%lld\n", when[x]); } void inline one() { scanf("%d", &n); REP (i, n) { scanf("%d", money + i); cycle_id[i] = -1; cycle_start[i] = -1; } scanf("%d", &m); scanf("%s", deltas); generate_cycles(); // printf("cycles_count=%d\n", cycles_count); // REP(j, n) { // printf("j=%2d (cid=%2d, cstart=%2d): ", j, cycle_id[j], cycle_start[j]); // FORE(ct, cycles[j]) { // printf("%2d ", *ct); // } // puts(""); // } // REP (i, cycles_count) { // printf("%d:", i); // FORE(jt, cycles_sums[i]) { // printf(" %d", *jt); // } // puts(""); // printf("minpos=%d minpos2=%d cmp=%d\n", // int(min_element(cycles_sums[i].begin(), // cycles_sums[i].begin() + n + 1) - cycles_sums[i].begin()), // int(min_element(cycles_sums[i].begin(), // cycles_sums[i].begin() + 2 * n + 1) - cycles_sums[i].begin()), // cycle_min_sum_pos[i] // ); // } ll result = LLINF; REP (a, n) { ll when = compute_when(a); // printf("w=%lld\n", when[a]); result = min(result, when); // printf("r=%lld\n", result); } if (result == LLINF) { puts("-1"); } else { printf("%lld\n", result); } } int main() { //int z; scanf("%d", &z); while(z--) one(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | // Uzylem struktury danych RMQ ze strony: http://codeforces.com/blog/entry/15169 #include <bits/stdc++.h> using namespace std; #define PB push_back #define FORE(i, t) for(__typeof(t.begin())i=t.begin();i!=t.end();++i) #define SZ(x) int((x).size()) #define REP(i, n) for(int i=0,_=(n);i<_;++i) #define FOR(i, a, b) for(int i=(a),_=(b);i<=_;++i) #define FORD(i, a, b) for(int i=(a),_=(b);i>=_;--i) typedef long long ll; typedef vector<int> vi; typedef pair<int, int> pii; const ll LLINF = (ll) 3e18 + 9; const int INF = 1e9 + 9; const int MAX_N = 1e6 + 3; const int MAX_M = 1e6 + 3; struct RMQ { int N; vi a; void init(int n) { int lgn = 0; for (int x = n; x > 0; x /= 2) { ++lgn; } N = 1 << (lgn + 1); a.resize(N * 2); REP(i, N * 2) { a[i] = INF; } } void init(const vi &v) { this->init(SZ(v)); REP(i, SZ(v)) { this->SetMin(i, v[i]); } } void SetMin(int pos, int x) { for (int i = pos + N; i; i >>= 1) a[i] = min(a[i], x); } int GetMin(int L, int R) const // [L, R) i.e. L <= i < R { int res = INF; for (L += N, R += N; L < R; L >>= 1, R >>= 1) { if (L & 1) { res = min(res, a[L]); L++; } if (R & 1) { R--; res = min(res, a[R]); } } return res; } }; int n, m; int money[MAX_N]; char deltas[MAX_M]; vi cycles[MAX_M]; int cycle_id[MAX_M]; int cycle_start[MAX_M]; vi cycles_sums[MAX_M]; RMQ rmqs[MAX_M]; int cycle_min_sum_pos[MAX_M]; int cycles_count = 0; void generate_cycles() { REP (i, m) { if (cycle_id[i] == -1) { ++cycles_count; for (int j = i, pos = 0; ; j = (j + n) % m, ++pos) { if (!cycles[i].empty()) { if (cycles[i][0] == j) { break; } } cycles[i].PB(j); cycle_id[j] = i; cycle_start[j] = pos; } } } FOR (i, m, n) { cycle_id[i] = cycle_id[i % m]; cycle_start[i] = cycle_start[i % m]; } REP (i, cycles_count) { // printf("icc=%d\n", i); int cycle_size = SZ(cycles[i]); int sum = 0; cycles_sums[i].PB(sum); // puts("aaa"); REP (j, 2 * cycle_size) { int delta = deltas[cycles[i][j % cycle_size]] == 'W' ? 1 : -1; sum += delta; cycles_sums[i].PB(sum); } // puts("bbb"); // printf("szcycles=%d\n", SZ(cycles_sums[i])); int min_el = *min_element(cycles_sums[i].begin(), cycles_sums[i].begin() + cycle_size + 1); REP (j, cycle_size + 1) { if (cycles_sums[i][j] == min_el) { cycle_min_sum_pos[i] = j; break; } } // puts("ccc"); rmqs[i].init(cycles_sums[i]); // puts("ddd"); } } ll compute_when(int x) { int cid = cycle_id[x]; // printf("a=%d\n", x); // printf(" cid=%d cstart=%d cs_at_start=%d\n", cid, cycle_start[x], cycles_sums[cid][cycle_start[x]]); int money_from_min_pos = money[x] - cycles_sums[cid][cycle_start[x]] + cycles_sums[cid][cycle_min_sum_pos[cid]]; int cycle_delta = cycles_sums[cid][SZ(cycles[cid])]; // printf(" cycle_delta=%d\n", cycle_delta); int how_many_cycles = -1; if (money_from_min_pos > 0) { if (cycle_delta >= 0) { //TODO return LLINF; } else { how_many_cycles = money_from_min_pos / (-cycle_delta); if (money_from_min_pos % (-cycle_delta) == 0) { --how_many_cycles; } } } int last_safe_pos; int money_at_last_safe_post; if (how_many_cycles >= 0) { last_safe_pos = cycle_min_sum_pos[cid]; money_at_last_safe_post = money_from_min_pos + cycle_delta * how_many_cycles; } else { last_safe_pos = cycle_start[x]; money_at_last_safe_post = money[x]; } // printf(" last_safe_pos=%d\n", last_safe_pos); int a = last_safe_pos, b = SZ(cycles_sums[cid]) * 2; while (a <= b) { int d = (a + b) / 2; int spend = cycles_sums[cid][last_safe_pos] - rmqs[cid].GetMin(last_safe_pos, d + 1); if (spend < money_at_last_safe_post) { a = d + 1; } else { b = d - 1; } } ll bankrupt_relative_pos = a - last_safe_pos - 1; ll bankrupt_abs_pos = -1; if (how_many_cycles >= 0) { // printf("%d - %d + %d * %d + %lld\n", cycle_min_sum_pos[cid], cycle_start[x], how_many_cycles, SZ(cycles[cid]), bankrupt_relative_pos); bankrupt_abs_pos = cycle_min_sum_pos[cid] - cycle_start[x] + (ll) how_many_cycles * (ll) SZ(cycles[cid]) + bankrupt_relative_pos; } else { bankrupt_abs_pos = bankrupt_relative_pos; } // printf(" mfmp=%d hmc=%d bankrupt_rel=%d bankrupt_abs=%d\n", // money_from_min_pos, how_many_cycles, bankrupt_relative_pos, bankrupt_abs_pos); // printf("x+1=%lld n=%lld bank=%lld\n", (ll) (x + 1), (ll) n, (ll) bankrupt_abs_pos); return (ll) (x + 1) + (ll) n * (ll) bankrupt_abs_pos; // printf(" -> when=%lld\n", when[x]); } void inline one() { scanf("%d", &n); REP (i, n) { scanf("%d", money + i); cycle_id[i] = -1; cycle_start[i] = -1; } scanf("%d", &m); scanf("%s", deltas); generate_cycles(); // printf("cycles_count=%d\n", cycles_count); // REP(j, n) { // printf("j=%2d (cid=%2d, cstart=%2d): ", j, cycle_id[j], cycle_start[j]); // FORE(ct, cycles[j]) { // printf("%2d ", *ct); // } // puts(""); // } // REP (i, cycles_count) { // printf("%d:", i); // FORE(jt, cycles_sums[i]) { // printf(" %d", *jt); // } // puts(""); // printf("minpos=%d minpos2=%d cmp=%d\n", // int(min_element(cycles_sums[i].begin(), // cycles_sums[i].begin() + n + 1) - cycles_sums[i].begin()), // int(min_element(cycles_sums[i].begin(), // cycles_sums[i].begin() + 2 * n + 1) - cycles_sums[i].begin()), // cycle_min_sum_pos[i] // ); // } ll result = LLINF; REP (a, n) { ll when = compute_when(a); // printf("w=%lld\n", when[a]); result = min(result, when); // printf("r=%lld\n", result); } if (result == LLINF) { puts("-1"); } else { printf("%lld\n", result); } } int main() { //int z; scanf("%d", &z); while(z--) one(); } |