#include <stdint.h> #include <cmath> #include <csignal> #include <bitset> #include <map> #include <vector> #include <iostream> #include <iomanip> #include <sstream> using namespace std; typedef unsigned int uint; #define self (*this) class DecBigInt { public: typedef uint32_t uint1d_t; // digit type typedef int32_t int1d_t; // signed digit type typedef uint64_t uint2d_t; // double-digit type typedef int64_t int2d_t; // signed double-digit type private: std::vector<uint1d_t> v; // digits bool n; // sign (true if negative) public: static uint1d_t const RADIX = 1000000000; // digits system base static uint const RADIX_DEC_DIGITS = 9; // decimal digits per actual digit static uint const RADIX_BITS = 30; // bits per actual digit static uint const MIN_KARTASUBA_DIGITS = 32; // empirical result // constructors/destructor DecBigInt() { clear(); } template<typename some_t> DecBigInt(some_t a) { self = a; } ~DecBigInt() { } // clear DecBigInt & clear() { v.clear(); n = false; return self; } // integer assignment #define UINT_ASSIGN(uint_t) \ DecBigInt & operator=(uint_t const &a) { \ clear(); for(uint_t t = a; t; t /= RADIX) v.push_back(t % RADIX); return self; \ } #define INT_ASSIGN(int_t) \ DecBigInt & operator=(int_t const &a) { \ if(a < 0) { return (self = -a).neg(); } \ clear(); for(int_t t = a; t; t /= RADIX) v.push_back(t % RADIX); return self; \ } UINT_ASSIGN(uint1d_t); UINT_ASSIGN(uint2d_t); INT_ASSIGN(int1d_t); INT_ASSIGN(int2d_t); #undef UINT_ASSIGN #undef INT_ASSIGN // string assignment DecBigInt & operator=(std::string const &a) { std::istringstream ss(a); ss >> self; return self; } DecBigInt & operator=(char const * const &a) { return (self = std::string(a)); } // floating-point value assignment #define NUM_ASSIGN(num_t) \ DecBigInt & operator=(num_t const &a) { \ clear(); \ num_t r = floor(fabs(a)); \ while(r > 0.5) { \ v.push_back((fmod(r, RADIX))); \ r = floor(r / RADIX); \ } \ n = (a < 0); \ return self; \ } NUM_ASSIGN(float) NUM_ASSIGN(double) NUM_ASSIGN(long double) #undef NUM_ASSIGN // copying DecBigInt & operator=(DecBigInt const &a) { v = a.v; n = a.n; return self; } // swap DecBigInt & swap(DecBigInt &a) { std::swap(n, a.n); v.swap(a.v); return self; } // toggle sign DecBigInt & neg() { n = not n; return self; } // absolute value DecBigInt abs() const { DecBigInt ret(self); ret.n = false; return ret; } // unary + and - (note: unary + is useful for making a copy) DecBigInt operator+() const { return self; } DecBigInt operator-() const { DecBigInt ret(self); ret.neg(); return ret; } // digits count uint digits() const { return v.size(); } // signum int sgn_nz() const { return 1 - 2 * n; } // non-zero version int sgn() const { return (self ? sgn_nz() : 0); } // cast to bool (true iff non-zero) operator bool() const { return not v.empty(); } // cast to integer or floating-point types #define ARITHMETIC_CAST(some_t) \ operator some_t() const { \ some_t ret = 0; \ for(uint i = digits(); i--;) ret = ret * RADIX + v[i]; \ return (n ? -ret : ret); \ } ARITHMETIC_CAST(uint1d_t); ARITHMETIC_CAST(int1d_t); ARITHMETIC_CAST(uint2d_t); ARITHMETIC_CAST(int2d_t); ARITHMETIC_CAST(float); ARITHMETIC_CAST(double); ARITHMETIC_CAST(long double); #undef ARITHMETIC_CAST // cast to string operator std::string() const { std::ostringstream ss; ss << self; return ss.str(); } // pop leading zeros DecBigInt & fix() { while(self and (v.back() == 0)) v.pop_back(); if(not self) n = false; return self; } // compare absolute values (positive: greater, 0: equal, negative: lower) int cmp_abs(DecBigInt const &a) const { int sd = digits(), ad = a.digits(); if(sd != ad) return sd - ad; for(uint i = sd; i--;) if(v[i] != a.v[i]) return (v[i] > a.v[i] ? 1 : -1); return 0; } // compare DecBigInts int cmp(DecBigInt const &a) const { if(n == a.n) return sgn_nz() * cmp_abs(a); /* else */ return a.n - n; } // compare absulute value against small unsigned number int cmp_abs(uint1d_t const &a) const { if(not self) return (a ? -1 : 0); if(digits() > 2) return true; uint2d_t sv = self; return (sv == a ? 0 : (sv > a ? 1 : -1)); } // compare against small unsigned number int cmp(uint1d_t const &a) const { if(self.n) return -1; /* else */ return cmp_abs(a); } // compare against small signed number int cmp(int1d_t const &a) const { if(a >= 0) return (n ? -1 : cmp(uint1d_t(a))); /* else */ return (n ? -cmp_abs(uint1d_t(-a)) : 1); } // comparison operators template<typename some_t> bool operator< (some_t rhs) const { return cmp(rhs) < 0; } template<typename some_t> bool operator<=(some_t rhs) const { return cmp(rhs) <= 0; } template<typename some_t> bool operator==(some_t rhs) const { return cmp(rhs) == 0; } template<typename some_t> bool operator!=(some_t rhs) const { return cmp(rhs) != 0; } template<typename some_t> bool operator>=(some_t rhs) const { return cmp(rhs) >= 0; } template<typename some_t> bool operator> (some_t rhs) const { return cmp(rhs) > 0; } // increment absolute value DecBigInt & inc_abs() { uint i = 0, sd = digits(); for(; i < sd; ++i) if(++v[i] == RADIX) v[i] = 0; else break; if(i == sd) v.push_back(1); return self; } // decrement absolute value DecBigInt & dec_abs() { if(not self) { v.push_back(1); return neg(); } // assertion: some digit is non-zero for each non-zero number for(uint i = 0; true; i++) if(--v[i] >= RADIX) v[i] = RADIX - 1; else break; return fix(); } // incrementation/decrementation operators DecBigInt & operator++() { return (n ? dec_abs() : inc_abs()); } DecBigInt & operator--() { return (n ? inc_abs() : dec_abs()); } DecBigInt operator++(int) { DecBigInt ret(self); ++self; return ret; } DecBigInt operator--(int) { DecBigInt ret(self); --self; return ret; } // fix single digit static uint1d_t digit_fix(uint1d_t const &a) { if(a < RADIX) return a; /* else */ if(int1d_t(a) > 0) return a - RADIX; /* else */ return a + RADIX; } // add absolute values DecBigInt & add_abs(DecBigInt const &a) { uint1d_t t = 0; uint sd = digits(), ad = a.digits(); if(sd < ad) { v.resize(ad, 0); sd = ad; } uint i = 0; for(; i < ad; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i] + a.v[i]); for(; i < sd; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i]); if(t >= RADIX) v.push_back(1); return self; } // subtract absolute values DecBigInt & sub_abs(DecBigInt const &a) { int1d_t t = 0; uint sd = digits(), ad = a.digits(); uint i = 0; for(; i < ad; ++i) v[i] = digit_fix(t = -(t < 0) + v[i] - a.v[i]); for(; i < sd; ++i) v[i] = digit_fix(t = -(t < 0) + v[i]); return fix(); } // reverse (minuend-based) subtract absolute values DecBigInt & min_abs(DecBigInt const &a) { int1d_t t = 0; uint sd = digits(), ad = a.digits(); if(sd < ad) { v.resize(ad, 0); sd = ad; } for(uint i = 0; i < sd; ++i) v[i] = digit_fix(t = -(t < 0) - v[i] + a.v[i]); return fix(); } // addition DecBigInt & operator+=(DecBigInt const &rhs) { if(n == rhs.n) return add_abs(rhs); int c = cmp_abs(rhs); if(c == 0) return clear(); else if(c > 0) return sub_abs(rhs); else /* if(c < 0) */ return min_abs(rhs).neg(); } // subtraction DecBigInt & operator-=(DecBigInt const &rhs) { if(n != rhs.n) return add_abs(rhs); int c = cmp_abs(rhs); if(c == 0) return clear(); else if(c > 0) return sub_abs(rhs); else /* if(c < 0) */ return min_abs(rhs).neg(); } // addition and subtraction operators DecBigInt operator+(DecBigInt const &rhs) const { return ((+self) += rhs); } DecBigInt operator-(DecBigInt const &rhs) const { return ((+self) -= rhs); } // multi-digit right keep DecBigInt & rdkeep(int const &ds) { if(uint(ds) >= digits()) return self; v.erase(v.begin() + ds, v.end()); return fix(); } // multi-digit right shift DecBigInt & rdshift(int const &ds) { if(ds < 0) return ldshift(-ds); if(uint(ds) >= digits()) return clear(); v.erase(v.begin(), v.begin() + ds); return self; } // multi-digit left shift DecBigInt & ldshift(int const &ds) { if(ds < 0) return rdshift(-ds); v.insert(v.begin(), ds, 0); return self; } // add absolute value at offset DecBigInt & add_abs_at(DecBigInt const &a, uint const &off = 0) { if(&a == this) return add_abs_at(+a, off); uint1d_t t = 0; uint sd = digits(), ad = a.digits() + off; if(sd < ad) { v.resize(ad, 0); sd = ad; } uint i = off; for(; i < ad; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i] + a.v[i - off]); for(; i < sd; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i]); if(t >= RADIX) v.push_back(1); return self; } // multiply times digit DecBigInt & operator*=(uint1d_t const &rhs) { if(rhs == 0) return clear(); uint2d_t t = 0; uint2d_t mul = rhs; uint sd = digits(); uint i = 0; for(; i < sd; ++i) v[i] = (t = (t / RADIX) + v[i] * mul) % RADIX; t /= RADIX; if(t) v.push_back(t); return self; } DecBigInt operator*(uint1d_t const &rhs) const { return ((+self) *= rhs); } // multiplication DecBigInt operator*(DecBigInt const &rhs) const { if(not rhs) return DecBigInt(); DecBigInt ret; uint sd = digits(), rd = rhs.digits(), dd = std::min(sd, rd); if(dd > MIN_KARTASUBA_DIGITS) { // Kartasuba algorithm uint hd = dd / 2; DecBigInt sh(self); sh.n = false; sh.rdshift(hd); DecBigInt sl(self); sl.n = false; sl.rdkeep (hd); DecBigInt rh(rhs); rh.n = false; rh.rdshift(hd); DecBigInt rl(rhs); rl.n = false; rl.rdkeep (hd); DecBigInt kh(sh * rh); DecBigInt kl(sl * rl); sl += sh; rl += rh; DecBigInt km(sl * rl); km -= kh; km -= kl; kh.ldshift(hd * 2); km.ldshift(hd); ret = kh + km + kl; } else { for(uint i = 0; i < sd; ++i) ret.add_abs_at(rhs * v[i], i); } ret.n = n xor rhs.n; return ret; } // in-place multiplication DecBigInt & operator*=(DecBigInt const &rhs) { return (self = self * rhs); } // power exponentiation DecBigInt & pow(uint const &exp) { if(exp == 0) return (self = 1); DecBigInt mul(self); for(uint e = exp - 1; e; e >>= 1) { if(e & 1) self *= mul; mul *= mul; } return self; } // modulo by small divisor int2d_t operator%(uint1d_t const &rhs) const { uint2d_t mul = RADIX % rhs; uint2d_t rem = 0; for(uint i = digits(); i--;) rem = (rem * mul + v[i]) % rhs; return (n ? -rem : rem); } // simplified in-place division by 2 DecBigInt & div2() { static uint const c = RADIX / 2; int sd = digits(); for(int i = 0; i < sd - 1; ++i) v[i] = (v[i] / 2) + (v[i + 1] & 1) * c; if(sd) v[sd - 1] /= 2; return fix(); } // division algorithm DecBigInt & inplace_modulo(DecBigInt const &div, DecBigInt &quo) { if(not div) raise(SIGFPE); bool sn = n; n = false; DecBigInt d(div); d.n = false; quo.clear(); DecBigInt m(1); int b = (digits() - d.digits() + 1) * RADIX_BITS; if(b > 0) { DecBigInt h(2); h.pow(b); for(d *= h, m = h; self and b >= 0; d.div2(), m.div2(), --b) { if(cmp_abs(d) >= 0) { sub_abs(d); quo.add_abs(m); } } } quo.n = div.n xor sn; n = sn; return self; } // modulo only (slightly faster) DecBigInt & inplace_modulo(DecBigInt const &div) { if(not div) raise(SIGFPE); bool sn = n; n = false; DecBigInt d(div); d.n = false; int b = (digits() - d.digits() + 1) * RADIX_BITS; if(b > 0) { DecBigInt h(2); h.pow(b); for(d *= h; self and b >= 0; d.div2(), --b) { if(cmp_abs(d) >= 0) sub_abs(d); } } n = sn; return self; } // division + modulo API std::pair<DecBigInt, DecBigInt> divmod(DecBigInt const &rhs) { std::pair<DecBigInt, DecBigInt> ret; ret.second = self; ret.second.inplace_modulo(rhs, ret.first); return ret; } // division and modulo operators DecBigInt & operator%=(DecBigInt const &rhs) { return inplace_modulo(rhs); } DecBigInt operator% (DecBigInt const &rhs) const { return ((+self) %= rhs); } DecBigInt operator/ (DecBigInt const &rhs) const { DecBigInt quo; (+self).inplace_modulo(rhs, quo); return quo; } DecBigInt & operator/=(DecBigInt const &rhs) { return (self = self / rhs); } // print to ostream friend std::ostream& operator<<(std::ostream& os, DecBigInt const &rhs) { if(not rhs) return os << '0'; if(rhs.n) os << '-'; os << rhs.v.back(); for(uint i = rhs.digits() - 1; i--;) os << std::setw(RADIX_DEC_DIGITS) << std::setfill('0') << rhs.v[i]; return os; } // read from istream friend std::istream& operator>>(std::istream& is, DecBigInt &rhs) { std::string word; is >> word; rhs.clear(); if(word.empty()) return is; int l = 0; if(word[0] == '-') { l = 1; rhs.n = true; } for(int i = word.length() - 1; i >= l;) { uint1d_t t = 0, mul = 1; while(i >= l and mul < RADIX) { t += mul * (word[i--] - '0'); mul *= 10; } rhs.v.push_back(t); } rhs.fix(); return is; } }; int const N = 21; typedef bitset<N> row; struct RowCmp { bool operator()(row const &a, row const &b) const { for(int i = N; i --> 0;) if(a[i] ^ b[i]) return a[i]; return false; } }; struct Congruence { int val, mod, min; Congruence(): val(0), mod(1), min(0) { } Congruence(int const &val, int const &mod, int const &min): val(val), mod(mod), min(min) { } ~Congruence() { } void fix() { val %= mod; if(val < 0) val += mod; } }; struct BigCongruence { DecBigInt val, mod; BigCongruence(): val(0), mod(1) { } BigCongruence(DecBigInt const &val, DecBigInt const &mod): val(val), mod(mod) { } BigCongruence(Congruence const &con): val(con.val), mod(con.mod) { } ~BigCongruence() { } void fix() { val %= mod; if(val < 0) val += mod; } }; DecBigInt gcd(DecBigInt const &a, DecBigInt const &b) { return b ? gcd(b, a % b) : a; } void egcd(DecBigInt const &p, DecBigInt const &q, DecBigInt &pf, DecBigInt &qf, DecBigInt &r) { r = p; pf = 1, qf = 0; DecBigInt b = q, bpf = 0, bqf = 1; while(b) { DecBigInt d = r / b; DecBigInt t = r, tpf = pf, tqf = qf; r = b; pf = bpf; qf = bqf; b = t - b * d; bpf = tpf - bpf * d; bqf = tqf - bqf * d; } } BigCongruence merge(BigCongruence const &ca, BigCongruence cb) { BigCongruence cr; DecBigInt pa, pb; DecBigInt g = gcd(ca.mod, cb.mod); cb.mod /= g; cb.fix(); egcd(ca.mod, cb.mod, pa, pb, g); cr.val = pa * ca.mod * cb.val + pb * cb.mod * ca.val; cr.mod = ca.mod * cb.mod; cr.fix(); return cr; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, b, r; cin >> n >> b >> r; vector<row> mtx(n); for(int i = 0; i < n; ++i) { string s; cin >> s; for(int j = 0; j < n; ++j) mtx[i][j] = (s[j] == '1'); } row bRow; for(int i = 0; i < b; ++i) bRow[i] = true; map<int, int> ok; bool allowStage2 = true; vector<Congruence> congs; for(int q = 0; q < r; ++q) { int t; cin >> t; --t; map< row, int, RowCmp, allocator< pair<row const, int> > > mp; row c = mtx[t]; int i = 0; mp[c] = i; int p0 = -1; int pl = -1; int lastOk = -1; if((c & bRow) == c) { if(ok.find(i) == ok.end()) ok[i] = 1; else ++ok[i]; lastOk = i; } for(; ++i;) { row d; for(int j = 0; j < n; ++j) if(c[j]) d |= mtx[j]; c = d; if(mp.find(c) != mp.end()) { p0 = mp[c]; pl = i - p0; break; } if((c & bRow) == c) { if(ok.find(i) == ok.end()) ok[i] = 1; else ++ok[i]; lastOk = i; } mp[c] = i; } if(lastOk >= p0) { congs.push_back(Congruence((lastOk - p0) % pl, pl, p0)); } else { allowStage2 = false; } } for(map<int, int>::iterator it = ok.begin(); it != ok.end(); ++it) { if(it->second == r) { cout << 1 + it->first << '\n'; return 0; } } if(not allowStage2) { cout << "-1\n"; return 0; } //TODO merge congruences BigCongruence rc; int min = 0; for(unsigned int i = 0; i < congs.size(); ++i) { rc = merge(rc, BigCongruence(congs[i])); min = max(min, congs[i].min); } DecBigInt ret = rc.val; DecBigInt q = (DecBigInt(min) + rc.mod - DecBigInt(1)) / rc.mod; cout << ret + q * rc.mod << '\n'; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | #include <stdint.h> #include <cmath> #include <csignal> #include <bitset> #include <map> #include <vector> #include <iostream> #include <iomanip> #include <sstream> using namespace std; typedef unsigned int uint; #define self (*this) class DecBigInt { public: typedef uint32_t uint1d_t; // digit type typedef int32_t int1d_t; // signed digit type typedef uint64_t uint2d_t; // double-digit type typedef int64_t int2d_t; // signed double-digit type private: std::vector<uint1d_t> v; // digits bool n; // sign (true if negative) public: static uint1d_t const RADIX = 1000000000; // digits system base static uint const RADIX_DEC_DIGITS = 9; // decimal digits per actual digit static uint const RADIX_BITS = 30; // bits per actual digit static uint const MIN_KARTASUBA_DIGITS = 32; // empirical result // constructors/destructor DecBigInt() { clear(); } template<typename some_t> DecBigInt(some_t a) { self = a; } ~DecBigInt() { } // clear DecBigInt & clear() { v.clear(); n = false; return self; } // integer assignment #define UINT_ASSIGN(uint_t) \ DecBigInt & operator=(uint_t const &a) { \ clear(); for(uint_t t = a; t; t /= RADIX) v.push_back(t % RADIX); return self; \ } #define INT_ASSIGN(int_t) \ DecBigInt & operator=(int_t const &a) { \ if(a < 0) { return (self = -a).neg(); } \ clear(); for(int_t t = a; t; t /= RADIX) v.push_back(t % RADIX); return self; \ } UINT_ASSIGN(uint1d_t); UINT_ASSIGN(uint2d_t); INT_ASSIGN(int1d_t); INT_ASSIGN(int2d_t); #undef UINT_ASSIGN #undef INT_ASSIGN // string assignment DecBigInt & operator=(std::string const &a) { std::istringstream ss(a); ss >> self; return self; } DecBigInt & operator=(char const * const &a) { return (self = std::string(a)); } // floating-point value assignment #define NUM_ASSIGN(num_t) \ DecBigInt & operator=(num_t const &a) { \ clear(); \ num_t r = floor(fabs(a)); \ while(r > 0.5) { \ v.push_back((fmod(r, RADIX))); \ r = floor(r / RADIX); \ } \ n = (a < 0); \ return self; \ } NUM_ASSIGN(float) NUM_ASSIGN(double) NUM_ASSIGN(long double) #undef NUM_ASSIGN // copying DecBigInt & operator=(DecBigInt const &a) { v = a.v; n = a.n; return self; } // swap DecBigInt & swap(DecBigInt &a) { std::swap(n, a.n); v.swap(a.v); return self; } // toggle sign DecBigInt & neg() { n = not n; return self; } // absolute value DecBigInt abs() const { DecBigInt ret(self); ret.n = false; return ret; } // unary + and - (note: unary + is useful for making a copy) DecBigInt operator+() const { return self; } DecBigInt operator-() const { DecBigInt ret(self); ret.neg(); return ret; } // digits count uint digits() const { return v.size(); } // signum int sgn_nz() const { return 1 - 2 * n; } // non-zero version int sgn() const { return (self ? sgn_nz() : 0); } // cast to bool (true iff non-zero) operator bool() const { return not v.empty(); } // cast to integer or floating-point types #define ARITHMETIC_CAST(some_t) \ operator some_t() const { \ some_t ret = 0; \ for(uint i = digits(); i--;) ret = ret * RADIX + v[i]; \ return (n ? -ret : ret); \ } ARITHMETIC_CAST(uint1d_t); ARITHMETIC_CAST(int1d_t); ARITHMETIC_CAST(uint2d_t); ARITHMETIC_CAST(int2d_t); ARITHMETIC_CAST(float); ARITHMETIC_CAST(double); ARITHMETIC_CAST(long double); #undef ARITHMETIC_CAST // cast to string operator std::string() const { std::ostringstream ss; ss << self; return ss.str(); } // pop leading zeros DecBigInt & fix() { while(self and (v.back() == 0)) v.pop_back(); if(not self) n = false; return self; } // compare absolute values (positive: greater, 0: equal, negative: lower) int cmp_abs(DecBigInt const &a) const { int sd = digits(), ad = a.digits(); if(sd != ad) return sd - ad; for(uint i = sd; i--;) if(v[i] != a.v[i]) return (v[i] > a.v[i] ? 1 : -1); return 0; } // compare DecBigInts int cmp(DecBigInt const &a) const { if(n == a.n) return sgn_nz() * cmp_abs(a); /* else */ return a.n - n; } // compare absulute value against small unsigned number int cmp_abs(uint1d_t const &a) const { if(not self) return (a ? -1 : 0); if(digits() > 2) return true; uint2d_t sv = self; return (sv == a ? 0 : (sv > a ? 1 : -1)); } // compare against small unsigned number int cmp(uint1d_t const &a) const { if(self.n) return -1; /* else */ return cmp_abs(a); } // compare against small signed number int cmp(int1d_t const &a) const { if(a >= 0) return (n ? -1 : cmp(uint1d_t(a))); /* else */ return (n ? -cmp_abs(uint1d_t(-a)) : 1); } // comparison operators template<typename some_t> bool operator< (some_t rhs) const { return cmp(rhs) < 0; } template<typename some_t> bool operator<=(some_t rhs) const { return cmp(rhs) <= 0; } template<typename some_t> bool operator==(some_t rhs) const { return cmp(rhs) == 0; } template<typename some_t> bool operator!=(some_t rhs) const { return cmp(rhs) != 0; } template<typename some_t> bool operator>=(some_t rhs) const { return cmp(rhs) >= 0; } template<typename some_t> bool operator> (some_t rhs) const { return cmp(rhs) > 0; } // increment absolute value DecBigInt & inc_abs() { uint i = 0, sd = digits(); for(; i < sd; ++i) if(++v[i] == RADIX) v[i] = 0; else break; if(i == sd) v.push_back(1); return self; } // decrement absolute value DecBigInt & dec_abs() { if(not self) { v.push_back(1); return neg(); } // assertion: some digit is non-zero for each non-zero number for(uint i = 0; true; i++) if(--v[i] >= RADIX) v[i] = RADIX - 1; else break; return fix(); } // incrementation/decrementation operators DecBigInt & operator++() { return (n ? dec_abs() : inc_abs()); } DecBigInt & operator--() { return (n ? inc_abs() : dec_abs()); } DecBigInt operator++(int) { DecBigInt ret(self); ++self; return ret; } DecBigInt operator--(int) { DecBigInt ret(self); --self; return ret; } // fix single digit static uint1d_t digit_fix(uint1d_t const &a) { if(a < RADIX) return a; /* else */ if(int1d_t(a) > 0) return a - RADIX; /* else */ return a + RADIX; } // add absolute values DecBigInt & add_abs(DecBigInt const &a) { uint1d_t t = 0; uint sd = digits(), ad = a.digits(); if(sd < ad) { v.resize(ad, 0); sd = ad; } uint i = 0; for(; i < ad; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i] + a.v[i]); for(; i < sd; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i]); if(t >= RADIX) v.push_back(1); return self; } // subtract absolute values DecBigInt & sub_abs(DecBigInt const &a) { int1d_t t = 0; uint sd = digits(), ad = a.digits(); uint i = 0; for(; i < ad; ++i) v[i] = digit_fix(t = -(t < 0) + v[i] - a.v[i]); for(; i < sd; ++i) v[i] = digit_fix(t = -(t < 0) + v[i]); return fix(); } // reverse (minuend-based) subtract absolute values DecBigInt & min_abs(DecBigInt const &a) { int1d_t t = 0; uint sd = digits(), ad = a.digits(); if(sd < ad) { v.resize(ad, 0); sd = ad; } for(uint i = 0; i < sd; ++i) v[i] = digit_fix(t = -(t < 0) - v[i] + a.v[i]); return fix(); } // addition DecBigInt & operator+=(DecBigInt const &rhs) { if(n == rhs.n) return add_abs(rhs); int c = cmp_abs(rhs); if(c == 0) return clear(); else if(c > 0) return sub_abs(rhs); else /* if(c < 0) */ return min_abs(rhs).neg(); } // subtraction DecBigInt & operator-=(DecBigInt const &rhs) { if(n != rhs.n) return add_abs(rhs); int c = cmp_abs(rhs); if(c == 0) return clear(); else if(c > 0) return sub_abs(rhs); else /* if(c < 0) */ return min_abs(rhs).neg(); } // addition and subtraction operators DecBigInt operator+(DecBigInt const &rhs) const { return ((+self) += rhs); } DecBigInt operator-(DecBigInt const &rhs) const { return ((+self) -= rhs); } // multi-digit right keep DecBigInt & rdkeep(int const &ds) { if(uint(ds) >= digits()) return self; v.erase(v.begin() + ds, v.end()); return fix(); } // multi-digit right shift DecBigInt & rdshift(int const &ds) { if(ds < 0) return ldshift(-ds); if(uint(ds) >= digits()) return clear(); v.erase(v.begin(), v.begin() + ds); return self; } // multi-digit left shift DecBigInt & ldshift(int const &ds) { if(ds < 0) return rdshift(-ds); v.insert(v.begin(), ds, 0); return self; } // add absolute value at offset DecBigInt & add_abs_at(DecBigInt const &a, uint const &off = 0) { if(&a == this) return add_abs_at(+a, off); uint1d_t t = 0; uint sd = digits(), ad = a.digits() + off; if(sd < ad) { v.resize(ad, 0); sd = ad; } uint i = off; for(; i < ad; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i] + a.v[i - off]); for(; i < sd; ++i) v[i] = digit_fix(t = (t >= RADIX) + v[i]); if(t >= RADIX) v.push_back(1); return self; } // multiply times digit DecBigInt & operator*=(uint1d_t const &rhs) { if(rhs == 0) return clear(); uint2d_t t = 0; uint2d_t mul = rhs; uint sd = digits(); uint i = 0; for(; i < sd; ++i) v[i] = (t = (t / RADIX) + v[i] * mul) % RADIX; t /= RADIX; if(t) v.push_back(t); return self; } DecBigInt operator*(uint1d_t const &rhs) const { return ((+self) *= rhs); } // multiplication DecBigInt operator*(DecBigInt const &rhs) const { if(not rhs) return DecBigInt(); DecBigInt ret; uint sd = digits(), rd = rhs.digits(), dd = std::min(sd, rd); if(dd > MIN_KARTASUBA_DIGITS) { // Kartasuba algorithm uint hd = dd / 2; DecBigInt sh(self); sh.n = false; sh.rdshift(hd); DecBigInt sl(self); sl.n = false; sl.rdkeep (hd); DecBigInt rh(rhs); rh.n = false; rh.rdshift(hd); DecBigInt rl(rhs); rl.n = false; rl.rdkeep (hd); DecBigInt kh(sh * rh); DecBigInt kl(sl * rl); sl += sh; rl += rh; DecBigInt km(sl * rl); km -= kh; km -= kl; kh.ldshift(hd * 2); km.ldshift(hd); ret = kh + km + kl; } else { for(uint i = 0; i < sd; ++i) ret.add_abs_at(rhs * v[i], i); } ret.n = n xor rhs.n; return ret; } // in-place multiplication DecBigInt & operator*=(DecBigInt const &rhs) { return (self = self * rhs); } // power exponentiation DecBigInt & pow(uint const &exp) { if(exp == 0) return (self = 1); DecBigInt mul(self); for(uint e = exp - 1; e; e >>= 1) { if(e & 1) self *= mul; mul *= mul; } return self; } // modulo by small divisor int2d_t operator%(uint1d_t const &rhs) const { uint2d_t mul = RADIX % rhs; uint2d_t rem = 0; for(uint i = digits(); i--;) rem = (rem * mul + v[i]) % rhs; return (n ? -rem : rem); } // simplified in-place division by 2 DecBigInt & div2() { static uint const c = RADIX / 2; int sd = digits(); for(int i = 0; i < sd - 1; ++i) v[i] = (v[i] / 2) + (v[i + 1] & 1) * c; if(sd) v[sd - 1] /= 2; return fix(); } // division algorithm DecBigInt & inplace_modulo(DecBigInt const &div, DecBigInt &quo) { if(not div) raise(SIGFPE); bool sn = n; n = false; DecBigInt d(div); d.n = false; quo.clear(); DecBigInt m(1); int b = (digits() - d.digits() + 1) * RADIX_BITS; if(b > 0) { DecBigInt h(2); h.pow(b); for(d *= h, m = h; self and b >= 0; d.div2(), m.div2(), --b) { if(cmp_abs(d) >= 0) { sub_abs(d); quo.add_abs(m); } } } quo.n = div.n xor sn; n = sn; return self; } // modulo only (slightly faster) DecBigInt & inplace_modulo(DecBigInt const &div) { if(not div) raise(SIGFPE); bool sn = n; n = false; DecBigInt d(div); d.n = false; int b = (digits() - d.digits() + 1) * RADIX_BITS; if(b > 0) { DecBigInt h(2); h.pow(b); for(d *= h; self and b >= 0; d.div2(), --b) { if(cmp_abs(d) >= 0) sub_abs(d); } } n = sn; return self; } // division + modulo API std::pair<DecBigInt, DecBigInt> divmod(DecBigInt const &rhs) { std::pair<DecBigInt, DecBigInt> ret; ret.second = self; ret.second.inplace_modulo(rhs, ret.first); return ret; } // division and modulo operators DecBigInt & operator%=(DecBigInt const &rhs) { return inplace_modulo(rhs); } DecBigInt operator% (DecBigInt const &rhs) const { return ((+self) %= rhs); } DecBigInt operator/ (DecBigInt const &rhs) const { DecBigInt quo; (+self).inplace_modulo(rhs, quo); return quo; } DecBigInt & operator/=(DecBigInt const &rhs) { return (self = self / rhs); } // print to ostream friend std::ostream& operator<<(std::ostream& os, DecBigInt const &rhs) { if(not rhs) return os << '0'; if(rhs.n) os << '-'; os << rhs.v.back(); for(uint i = rhs.digits() - 1; i--;) os << std::setw(RADIX_DEC_DIGITS) << std::setfill('0') << rhs.v[i]; return os; } // read from istream friend std::istream& operator>>(std::istream& is, DecBigInt &rhs) { std::string word; is >> word; rhs.clear(); if(word.empty()) return is; int l = 0; if(word[0] == '-') { l = 1; rhs.n = true; } for(int i = word.length() - 1; i >= l;) { uint1d_t t = 0, mul = 1; while(i >= l and mul < RADIX) { t += mul * (word[i--] - '0'); mul *= 10; } rhs.v.push_back(t); } rhs.fix(); return is; } }; int const N = 21; typedef bitset<N> row; struct RowCmp { bool operator()(row const &a, row const &b) const { for(int i = N; i --> 0;) if(a[i] ^ b[i]) return a[i]; return false; } }; struct Congruence { int val, mod, min; Congruence(): val(0), mod(1), min(0) { } Congruence(int const &val, int const &mod, int const &min): val(val), mod(mod), min(min) { } ~Congruence() { } void fix() { val %= mod; if(val < 0) val += mod; } }; struct BigCongruence { DecBigInt val, mod; BigCongruence(): val(0), mod(1) { } BigCongruence(DecBigInt const &val, DecBigInt const &mod): val(val), mod(mod) { } BigCongruence(Congruence const &con): val(con.val), mod(con.mod) { } ~BigCongruence() { } void fix() { val %= mod; if(val < 0) val += mod; } }; DecBigInt gcd(DecBigInt const &a, DecBigInt const &b) { return b ? gcd(b, a % b) : a; } void egcd(DecBigInt const &p, DecBigInt const &q, DecBigInt &pf, DecBigInt &qf, DecBigInt &r) { r = p; pf = 1, qf = 0; DecBigInt b = q, bpf = 0, bqf = 1; while(b) { DecBigInt d = r / b; DecBigInt t = r, tpf = pf, tqf = qf; r = b; pf = bpf; qf = bqf; b = t - b * d; bpf = tpf - bpf * d; bqf = tqf - bqf * d; } } BigCongruence merge(BigCongruence const &ca, BigCongruence cb) { BigCongruence cr; DecBigInt pa, pb; DecBigInt g = gcd(ca.mod, cb.mod); cb.mod /= g; cb.fix(); egcd(ca.mod, cb.mod, pa, pb, g); cr.val = pa * ca.mod * cb.val + pb * cb.mod * ca.val; cr.mod = ca.mod * cb.mod; cr.fix(); return cr; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, b, r; cin >> n >> b >> r; vector<row> mtx(n); for(int i = 0; i < n; ++i) { string s; cin >> s; for(int j = 0; j < n; ++j) mtx[i][j] = (s[j] == '1'); } row bRow; for(int i = 0; i < b; ++i) bRow[i] = true; map<int, int> ok; bool allowStage2 = true; vector<Congruence> congs; for(int q = 0; q < r; ++q) { int t; cin >> t; --t; map< row, int, RowCmp, allocator< pair<row const, int> > > mp; row c = mtx[t]; int i = 0; mp[c] = i; int p0 = -1; int pl = -1; int lastOk = -1; if((c & bRow) == c) { if(ok.find(i) == ok.end()) ok[i] = 1; else ++ok[i]; lastOk = i; } for(; ++i;) { row d; for(int j = 0; j < n; ++j) if(c[j]) d |= mtx[j]; c = d; if(mp.find(c) != mp.end()) { p0 = mp[c]; pl = i - p0; break; } if((c & bRow) == c) { if(ok.find(i) == ok.end()) ok[i] = 1; else ++ok[i]; lastOk = i; } mp[c] = i; } if(lastOk >= p0) { congs.push_back(Congruence((lastOk - p0) % pl, pl, p0)); } else { allowStage2 = false; } } for(map<int, int>::iterator it = ok.begin(); it != ok.end(); ++it) { if(it->second == r) { cout << 1 + it->first << '\n'; return 0; } } if(not allowStage2) { cout << "-1\n"; return 0; } //TODO merge congruences BigCongruence rc; int min = 0; for(unsigned int i = 0; i < congs.size(); ++i) { rc = merge(rc, BigCongruence(congs[i])); min = max(min, congs[i].min); } DecBigInt ret = rc.val; DecBigInt q = (DecBigInt(min) + rc.mod - DecBigInt(1)) / rc.mod; cout << ret + q * rc.mod << '\n'; return 0; } |