#include <cassert> #include <algorithm> #include <iostream> #include <random> #include <vector> using namespace std; struct Node { typedef bool has_new_line; int id; int label = 0; vector< int > neighbors; Node() {}; }; typedef vector< Node > graph_t; ostream& operator<< (ostream&, Node const&); template< typename T > ostream& operator<< (ostream&, vector< T > const&); graph_t reverse_graph(graph_t const& G) { graph_t R( G.size() ); for( int i = 0; i < G.size(); ++i ) { R[i].id = G[i].id; R[i].label = 0; for( int n = 0; n < G[i].neighbors.size(); ++n ) { int dst = G[i].neighbors[n]; R[dst].neighbors.push_back( i ); } } return R; } void dfs( vector<int>& history, graph_t& G, vector< int >& stack, int& count ) { while( stack.size() ) { // ostatni ze stosu, jeszcze nie sciagam int n_idx = stack.back(); // labeluje, jesli jeszcze nie zalabelowany Node& n = G[n_idx]; if( n.label == 0 ) { n.label = count; count += 1; } // sprawdzam, czy mam sasiada z label == 0 int next = 0; while( (next == 0) && (n.neighbors.size() > 0) ) { next = n.neighbors.back(); n.neighbors.pop_back(); if( G[next].label != 0 ) { next = 0; } } // jesli mam nieodwiedzonego sasiada, to wkladam go na stos // jesli nie, to zapamietuje slepy zaulek w kolejce if( next > 0 ) { stack.push_back( next ); } else { assert( stack.back() == n_idx ); stack.pop_back(); history.push_back( n_idx ); } } } //* zwraca wierzcholki scc (jesli jest jeden scc) // lub pusty vector (jesli liczba scc != 1) //* argumenty przez kopie, bo niszcze polaczenia //* kosaraju vector< int > get_scc_nodes(graph_t G) { graph_t R = reverse_graph( G ); vector< int > stack; int count = 1; // niszcze graf R vector< int > queue; for( int i = 0; i < R.size(); ++i ) { if( R[i].label == 0 ) { stack.push_back( i ); } dfs( queue, R, stack, count ); assert( stack.size() == 0 ); } assert( count - 1 == R.size() ); assert( queue.size() == R.size() ); count = 1; // przechodze graf G w kolejnosci z R vector< int > scc; int prev_scc_count = 0; for( auto it = queue.rbegin(); it < queue.rend(); ++it ) { int i = *it; if( G[i].label == 0 ) { stack.push_back( i ); dfs( scc, G, stack, count ); if( scc.size() == prev_scc_count + 1 ) { // znalezmy scc jednoelementowy, nie interesuje nas scc.pop_back(); } else { if( prev_scc_count == 0 ) { // scc wieloelementowy prev_scc_count = scc.size(); } else { // kolejny scc wieloelementowy // nie liczymy dalej, bo jest wiecej niz 1 scc scc.clear(); return scc; } } } } return scc; } int positive_filter_graph( graph_t& G, vector< int >& v ) { int count = 0; sort( v.begin(), v.end() ); // wyrzuc wierzcholki for_each( G.begin(), G.end(), [&](Node& n) { if( !binary_search( v.begin(), v.end(), n.id ) ) { n.neighbors.clear(); } }); for( auto&& node : G ) { auto et = remove_if( node.neighbors.begin(), node.neighbors.end(), [&](int i) { return !binary_search( v.begin(), v.end(), i ); }); int zostalo = et - node.neighbors.begin(); node.neighbors.resize( zostalo ); count += zostalo; } return count; } int negative_filter_graph( graph_t& G, int i ) { vector< int > v; for_each( G.begin(), G.end(), [&](Node const& n){ if( n.id != i ) { v.push_back( n.id ); } }); return positive_filter_graph( G, v ); } bool has_cycles( graph_t const& G ) { // Odwracam graf i bede pruc graph_t R = reverse_graph( G ); for_each( R.begin(), R.end(), [&](Node const& n){ for_each( n.neighbors.begin(), n.neighbors.end(), [&](int i) { R[i].label += 1; }); }); vector< int > queue; for( int i = 0; i < R.size(); ++i ) { if( R[i].label == 0 ) queue.push_back( i ); } while( queue.size() ) { int q = queue.back(); queue.pop_back(); Node& rr = R[q]; for( int i = 0; i < rr.neighbors.size(); ++i ) { int dst = rr.neighbors[i]; R[dst].label -= 1; assert( R[dst].label >= 0 ); if( R[dst].label == 0 ) { queue.push_back( dst ); } } } auto et = find_if( R.begin(), R.end(), [](Node const& n) { return n.label > 0; }); bool found_loop = ( et != R.end() ); return found_loop; } vector< int > run_baby_run( graph_t G, int start, int len ) { int curr = start; std::mt19937 generator( 0x11416906 ); for( int i = 0; i < len; ++i ) { Node& node = G[curr]; node.label += 1; int s = node.neighbors.size(); assert( s > 0 ); int idx = generator() % s; curr = node.neighbors[idx]; } auto it = max_element( G.begin(), G.end(), [](Node const& a, Node const& b){ return a.label < b.label; }); int winning_score = it->label; vector< int > result; for_each( G.begin(), G.end(), [&](Node const& n) { if( n.label >= (winning_score - 1) ) { result.push_back( n.id ); } }); assert( result.size() > 0 ); return result; } int main() { ios_base::sync_with_stdio( false ); int l_skrz; cin >> l_skrz; // 2 .. 500ooo int l_drog; cin >> l_drog; // 1 .. 1000ooo graph_t G(l_skrz+1); for( int i = 0; i < G.size(); ++i ) { G[i].id = i; } for( int i = 0; i < l_drog; ++i ) { int a; cin >> a; int b; cin >> b; G[a].neighbors.push_back(b); } vector< int > scc = get_scc_nodes( G ); if( scc.size() == 0 ) { cout << "NIE\n"; } else { int nowa_l_drog = positive_filter_graph( G, scc ); vector< int > best = run_baby_run(G, scc[0], 14 * nowa_l_drog ); // wyrzucamy wierzcholek negative_filter_graph( G, best[0] ); if( has_cycles( G ) ) { // dalej sa cykle cout << "0\n"; } else { cout << best.size() << "\n"; cout << best[0]; for( int i = 1; i < best.size(); ++i ) { cout << " " << best[i]; } cout << "\n"; } } return 0; } ostream& operator<< (ostream& os, Node const& n) { os << "[id=" << n.id << ",label=" << n.label << " (" << n.neighbors << ")]"; return os; } template< typename T > ostream& operator<< (ostream& os, vector< T >const& v ) { if( v.size() > 0 ) { os << v[0]; for( int i = 1; i < v.size(); ++i ) { os << " " << v[i]; } } return os; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | #include <cassert> #include <algorithm> #include <iostream> #include <random> #include <vector> using namespace std; struct Node { typedef bool has_new_line; int id; int label = 0; vector< int > neighbors; Node() {}; }; typedef vector< Node > graph_t; ostream& operator<< (ostream&, Node const&); template< typename T > ostream& operator<< (ostream&, vector< T > const&); graph_t reverse_graph(graph_t const& G) { graph_t R( G.size() ); for( int i = 0; i < G.size(); ++i ) { R[i].id = G[i].id; R[i].label = 0; for( int n = 0; n < G[i].neighbors.size(); ++n ) { int dst = G[i].neighbors[n]; R[dst].neighbors.push_back( i ); } } return R; } void dfs( vector<int>& history, graph_t& G, vector< int >& stack, int& count ) { while( stack.size() ) { // ostatni ze stosu, jeszcze nie sciagam int n_idx = stack.back(); // labeluje, jesli jeszcze nie zalabelowany Node& n = G[n_idx]; if( n.label == 0 ) { n.label = count; count += 1; } // sprawdzam, czy mam sasiada z label == 0 int next = 0; while( (next == 0) && (n.neighbors.size() > 0) ) { next = n.neighbors.back(); n.neighbors.pop_back(); if( G[next].label != 0 ) { next = 0; } } // jesli mam nieodwiedzonego sasiada, to wkladam go na stos // jesli nie, to zapamietuje slepy zaulek w kolejce if( next > 0 ) { stack.push_back( next ); } else { assert( stack.back() == n_idx ); stack.pop_back(); history.push_back( n_idx ); } } } //* zwraca wierzcholki scc (jesli jest jeden scc) // lub pusty vector (jesli liczba scc != 1) //* argumenty przez kopie, bo niszcze polaczenia //* kosaraju vector< int > get_scc_nodes(graph_t G) { graph_t R = reverse_graph( G ); vector< int > stack; int count = 1; // niszcze graf R vector< int > queue; for( int i = 0; i < R.size(); ++i ) { if( R[i].label == 0 ) { stack.push_back( i ); } dfs( queue, R, stack, count ); assert( stack.size() == 0 ); } assert( count - 1 == R.size() ); assert( queue.size() == R.size() ); count = 1; // przechodze graf G w kolejnosci z R vector< int > scc; int prev_scc_count = 0; for( auto it = queue.rbegin(); it < queue.rend(); ++it ) { int i = *it; if( G[i].label == 0 ) { stack.push_back( i ); dfs( scc, G, stack, count ); if( scc.size() == prev_scc_count + 1 ) { // znalezmy scc jednoelementowy, nie interesuje nas scc.pop_back(); } else { if( prev_scc_count == 0 ) { // scc wieloelementowy prev_scc_count = scc.size(); } else { // kolejny scc wieloelementowy // nie liczymy dalej, bo jest wiecej niz 1 scc scc.clear(); return scc; } } } } return scc; } int positive_filter_graph( graph_t& G, vector< int >& v ) { int count = 0; sort( v.begin(), v.end() ); // wyrzuc wierzcholki for_each( G.begin(), G.end(), [&](Node& n) { if( !binary_search( v.begin(), v.end(), n.id ) ) { n.neighbors.clear(); } }); for( auto&& node : G ) { auto et = remove_if( node.neighbors.begin(), node.neighbors.end(), [&](int i) { return !binary_search( v.begin(), v.end(), i ); }); int zostalo = et - node.neighbors.begin(); node.neighbors.resize( zostalo ); count += zostalo; } return count; } int negative_filter_graph( graph_t& G, int i ) { vector< int > v; for_each( G.begin(), G.end(), [&](Node const& n){ if( n.id != i ) { v.push_back( n.id ); } }); return positive_filter_graph( G, v ); } bool has_cycles( graph_t const& G ) { // Odwracam graf i bede pruc graph_t R = reverse_graph( G ); for_each( R.begin(), R.end(), [&](Node const& n){ for_each( n.neighbors.begin(), n.neighbors.end(), [&](int i) { R[i].label += 1; }); }); vector< int > queue; for( int i = 0; i < R.size(); ++i ) { if( R[i].label == 0 ) queue.push_back( i ); } while( queue.size() ) { int q = queue.back(); queue.pop_back(); Node& rr = R[q]; for( int i = 0; i < rr.neighbors.size(); ++i ) { int dst = rr.neighbors[i]; R[dst].label -= 1; assert( R[dst].label >= 0 ); if( R[dst].label == 0 ) { queue.push_back( dst ); } } } auto et = find_if( R.begin(), R.end(), [](Node const& n) { return n.label > 0; }); bool found_loop = ( et != R.end() ); return found_loop; } vector< int > run_baby_run( graph_t G, int start, int len ) { int curr = start; std::mt19937 generator( 0x11416906 ); for( int i = 0; i < len; ++i ) { Node& node = G[curr]; node.label += 1; int s = node.neighbors.size(); assert( s > 0 ); int idx = generator() % s; curr = node.neighbors[idx]; } auto it = max_element( G.begin(), G.end(), [](Node const& a, Node const& b){ return a.label < b.label; }); int winning_score = it->label; vector< int > result; for_each( G.begin(), G.end(), [&](Node const& n) { if( n.label >= (winning_score - 1) ) { result.push_back( n.id ); } }); assert( result.size() > 0 ); return result; } int main() { ios_base::sync_with_stdio( false ); int l_skrz; cin >> l_skrz; // 2 .. 500ooo int l_drog; cin >> l_drog; // 1 .. 1000ooo graph_t G(l_skrz+1); for( int i = 0; i < G.size(); ++i ) { G[i].id = i; } for( int i = 0; i < l_drog; ++i ) { int a; cin >> a; int b; cin >> b; G[a].neighbors.push_back(b); } vector< int > scc = get_scc_nodes( G ); if( scc.size() == 0 ) { cout << "NIE\n"; } else { int nowa_l_drog = positive_filter_graph( G, scc ); vector< int > best = run_baby_run(G, scc[0], 14 * nowa_l_drog ); // wyrzucamy wierzcholek negative_filter_graph( G, best[0] ); if( has_cycles( G ) ) { // dalej sa cykle cout << "0\n"; } else { cout << best.size() << "\n"; cout << best[0]; for( int i = 1; i < best.size(); ++i ) { cout << " " << best[i]; } cout << "\n"; } } return 0; } ostream& operator<< (ostream& os, Node const& n) { os << "[id=" << n.id << ",label=" << n.label << " (" << n.neighbors << ")]"; return os; } template< typename T > ostream& operator<< (ostream& os, vector< T >const& v ) { if( v.size() > 0 ) { os << v[0]; for( int i = 1; i < v.size(); ++i ) { os << " " << v[i]; } } return os; } |