1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <cstdint>
#include <iostream>
using namespace std;

int64_t power(int64_t a, int64_t n, int64_t mod)
{
	int64_t power = a;
	int64_t result = 1;

	while (n)
	{
		if (n & 1)
			result = (result * power) % mod;
		power = (power * power) % mod;
		n >>= 1;
	}
	return result;
}

// n−1 = 2^s * d with d odd by factoring powers of 2 from n−1
bool witness(int64_t n, int64_t s, int64_t d, int64_t a)
{
	int64_t x = power(a, d, n);
	int64_t y;

	while (s) {
		y = (x * x) % n;
		if (y == 1 && x != 1 && x != n - 1)
			return false;
		x = y;
		--s;
	}
	if (y != 1)
		return false;
	return true;
}

/*
* if n < 1,373,653, it is enough to test a = 2 and 3;
* if n < 9,080,191, it is enough to test a = 31 and 73;
* if n < 4,759,123,141, it is enough to test a = 2, 7, and 61;
* if n < 1,122,004,669,633, it is enough to test a = 2, 13, 23, and 1662803;
* if n < 2,152,302,898,747, it is enough to test a = 2, 3, 5, 7, and 11;
* if n < 3,474,749,660,383, it is enough to test a = 2, 3, 5, 7, 11, and 13;
* if n < 341,550,071,728,321, it is enough to test a = 2, 3, 5, 7, 11, 13, and 17.
*/

bool is_prime_mr(int64_t n)
{
	if (((!(n & 1)) && n != 2) || (n < 2) || (n % 3 == 0 && n != 3))
		return false;
	if (n <= 3)
		return true;

	int64_t d = n / 2;
	int64_t s = 1;
	while (!(d & 1)) {
		d /= 2;
		++s;
	}

	if (n < 1373653)
		return witness(n, s, d, 2) && witness(n, s, d, 3);
	if (n < 9080191)
		return witness(n, s, d, 31) && witness(n, s, d, 73);
	if (n < 4759123141)
		return witness(n, s, d, 2) && witness(n, s, d, 7) && witness(n, s, d, 61);
	if (n < 1122004669633)
		return witness(n, s, d, 2) && witness(n, s, d, 13) && witness(n, s, d, 23) && witness(n, s, d, 1662803);
	if (n < 2152302898747)
		return witness(n, s, d, 2) && witness(n, s, d, 3) && witness(n, s, d, 5) && witness(n, s, d, 7) && witness(n, s, d, 11);
	if (n < 3474749660383)
		return witness(n, s, d, 2) && witness(n, s, d, 3) && witness(n, s, d, 5) && witness(n, s, d, 7) && witness(n, s, d, 11) && witness(n, s, d, 13);
	return witness(n, s, d, 2) && witness(n, s, d, 3) && witness(n, s, d, 5) && witness(n, s, d, 7) && witness(n, s, d, 11) && witness(n, s, d, 13) && witness(n, s, d, 17);
}

const int64_t pows[] = {
	1, 
	10, 
	100, 
	1000, 
	10000,
	100000,
	1000000, 
	10000000, 
	100000000, 
	1000000000, 
	10000000000, 
	100000000000, 
	1000000000000,
	10000000000000
};

bool validate(int64_t left, int64_t right)
{
	return is_prime_mr(right) && is_prime_mr(left);
}

bool test(int64_t n)
{
	int64_t right = 0;
	int64_t pow_index = 0;

	while(n > 0)
	{
		int64_t num = n % 10;
		right += pows[pow_index] * num;
		n /= 10;
		pow_index++;

		if(num != 0 && validate(n, right))
		{
			return true;
		}
	}

	return false;
}

int main()
{
	ios_base::sync_with_stdio(false);
	int64_t num;
	cin >> num;

	cout << (test(num) ? "TAK" : "NIE");
    return 0;
}