1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <list>
#include <ctime>
#include <sstream>
#include <queue>
#include <stack>
#include <bitset>
#include <unordered_set>
#include <unordered_map>
using namespace std;
typedef vector<int> vi;
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned long long ull;
typedef short int sint;
#define FOR(x, b, e) for(int x=(b); x<=(e); ++x)
#define FORD(x, b, e) for(int x=((int)(b))-1; x>=(e); --x)
#define REP(x, n) for(int x=0; x<(n); ++x)
#define ALL(c) c.begin(),c.end()
#define SIZE(x) ((int)((x).size()))
#define PB push_back
#define ST first
#define ND second
#define mp(x,y) make_pair(x,y)
#define DEBUG 1
#define debug(x) {if (DEBUG)cerr <<#x <<" = " <<x <<endl; }
#define debugv(x) {if (DEBUG) {cerr <<#x <<" = "; FOREACH(it, (x)) cerr <<*it <<", "; cout <<endl; }}
#define REMAX(a,b) (a)=max((a),(b));
#define REMIN(a,b) (a)=min((a),(b));
#define wez(n) int (n); scanf("%d",&(n));
#define wez2(n,m) int (n),(m); scanf("%d %d",&(n),&(m));

const ull inf = 1000000000000000001LL;

const int N = 250001;
struct Row {
	ll goodLastInd;
	vector<ull> vals;
} F[N];
vi res;
ll n, k;

ull f(ll nn, ll inw) {
	ll maksInw = ((nn * (nn - 1)) /2);
	if (inw > maksInw) {
		return 0;
	}
	ll tinw = min(maksInw - inw, inw);
	if (nn == 0) {
		return 0;
	}
	if (tinw > F[nn].goodLastInd) {
		return inf;
	}
	return F[nn].vals[tinw];
}
void solve(ll inw, ll kk) {
	FOR(nnn, 1, n - 1) {
		ll nn = n - nnn + 1;
		int index = 0;
		ll maksInw = ((nn - 2) * (nn - 1)) / 2;
		index = max(0LL, inw - maksInw);
		while (true) {
			ull ifThis = f(nn - 1, inw - index);
			if (ifThis >= kk) {
				res.PB(index + 1);
				inw = inw - index;
				break;
			} else {
				kk -= ifThis;
				++index;
			}
		}
	}
	res.PB(1);
}

void precompute() {
	F[1].goodLastInd = 0;
	F[1].vals.PB(1);
	for (ll n = 2; n < N; ++n) {
		ll limit = (n * (n - 1)) / 2;
		ll inw = 0;
		while (inw <= limit) {
			ll temp = 0;
			for (ll i = max(inw - (n - 1), 0LL); i <= inw; ++i) {
				temp = temp + f(n - 1, i);
				if (temp >= inf) {
					break;
				}
			}
			if (temp >= inf) {
				break;
			} else {
				F[n].goodLastInd = inw;
				F[n].vals.PB(temp);
			}
			++inw;
		}
	}
}

const int NNN = 1 << 18;
int tree[2 * NNN], P;

int get(int kt, int ind = 1) {
	if (ind >= P) {
		int res = ind - P + 1;
		while (ind) {
			--tree[ind];
			ind>>=1;
		}
		return res;
	}
	if (kt <= tree[2 * ind]) {
		return get(kt, 2 * ind);
	} else {
		return get(kt - tree[2 * ind], 2 * ind + 1);
	}
}

int main() {
	precompute();
	scanf("%lld %lld", &n, &k);
	if ((n * (n - 1)) % 4 != 0) {
		printf("NIE\n");
	} else {
		ull required = (n * (n - 1)) / 4;
		ull howMany = f(n, required);
		if (howMany < k) {
			printf("NIE\n");
		} else {
			solve(required, k);
			P = 1;
			while (P < n) {
				P <<= 1;
			}
			REP(i, n) tree[P + i] = 1;
			FORD(i, P, 1) {
				tree[i] = tree[2 * i] + tree[2 * i + 1];
			}
			printf("TAK\n");
			REP(i, n) printf("%d ", get(res[i]));
			printf("\n");
		}
	}
	return 0;
}