1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include <bits/stdc++.h>
using namespace std;
#define ll long long

vector<int> solveFast(int n, long long kk) {
    int64_t k = kk;
    
    int64_t needed = 1LL * n * (n - 1) / 2;
    
    if(needed % 2) {
        return vector<int> ();
    }
    
    needed /= 2;
    
    vector<vector<int64_t>> dp(n + 1);

    dp[1].push_back(1);
    dp[0].push_back(1);

    for(int i = 1; i <= 100; ++i) {
        dp[0].push_back(0);
        dp[1].push_back(0);
    }
    
    for(int i = 2; i <= n; ++i) {
        for(int j = 0;true; ++j) {
            int64_t res = 0;
            for(int here = 0; here <= min(i - 1, j); ++here) {
                if(j - here + 1 > (int) dp[i - 1].size()) {
                    res = -1;
                    break;
                } else {
                    res += dp[i - 1][j - here];
                    if(res > 1e18) {
                        res = -1;
                        break;
                    }
                }
            }
            if(res == -1) {
                break;   
            } else {
                dp[i].push_back(res);
            }
        }
    }

    auto getCount = [&] (int elements, int64_t inversions) -> int64_t {
        int64_t maxx = 1LL * elements * (elements - 1) / 2;

        if(inversions > maxx) {
            return 0;
        }

        inversions = min(inversions, maxx - inversions);

        if(inversions >= (int64_t) dp[elements].size()) {
            return -1;
        }

        return dp[elements][inversions];
    };
    
    vector<int> aib(n + 1, 0);
    vector<int> ans;
    
    auto insert = [&] (int x) {
        while(x <= n) {
            aib[x] += 1;
            x += (x & (-x));
        }
    };
    
    auto query = [&] (int x) {
        int ans = 0;
        while(x > 0) {
            ans += aib[x];
            x -= (x & (-x));
        }
        return ans;
    };

    auto getIndex = [&] (int x) {
        int ans = 0;
        for(int lf = 1, rt = n; lf <= rt;) {
            int mid = (lf + rt) / 2;
            if(mid - query(mid - 1) <= x) {
                ans = mid;
                lf = mid + 1;
            } else {
                rt = mid - 1;
            }
        }
        return ans;
    };
    
    for(int i = 1; i <= n; ++i) {
        int start = 1;
        int64_t diff = needed - 1LL * (n - i) * (n - i - 1) / 2;
        
        start = max((int64_t) 1, diff + 1);
        
        if(start > n) {
            return vector<int> ();
        }

        int64_t past = 0, prev = 0;
        int who = -1;

        while(true and start <= n) {
            int64_t current = getCount(n - i, needed - (start - 1));
            if(current == -1) {
                who = getIndex(start);
                break;
            } else {
                past += current;
                if(past >= k) {
                    who = getIndex(start);
                    break;
                }
                prev = past;
            }
            start += 1;
        }
        
        if(who == -1) {
            return vector<int> ();
        }
        
        k -= prev;
        needed -= (start - 1);
        ans.push_back(who);
        insert(who);
    }

    return ans;
}
int main() {
    int n; cin >> n;
    long long k; cin >> k;

    auto sol = solveFast(n, k);
    if(sol.empty()) {
        cout << "NIE\n";
    } else {
        cout << "TAK\n";
        for(auto val : sol) {
            cout << val << " ";
        }
        cout << "\n";
    }
}