#include <cstdio> #include <algorithm> #include <set> #include <vector> using namespace std; #define LL long long #define PB push_back #define MAX_N 250020 LL OVER_MAX; LL N, K; vector<LL> inversions[MAX_N]; vector<int> score; set<int> available_values; int T[2000000]; int S; void add(int x) { x += S; while (x) { T[x]++; x /= 2; } } int sum(int x, int y) { x += S; y += S; int W = T[x]; if (x != y) W += T[y]; while (x / 2 != y / 2) { if (x % 2 == 0) W += T[x + 1]; if (y % 2 == 1) W += T[y - 1]; x /= 2; y /= 2; } return W; } void count_inversions(); LL inv(int n, LL k); void init(); void input(); bool solve(); int main() { init(); input(); if (solve()) { printf("TAK\n"); for (int i = 0; i < score.size(); ++i) { printf("%d ", score[i]); } printf("\n"); } else { printf("NIE\n"); } } int count_skipped(int x) { return x - 1 - sum(1, x); } int binary(int a, int b, int M) { if (a == b) return a; int c = (a + b) / 2; int skipped = count_skipped(c); if (skipped >= M) { return binary(a, c, M); } return binary(c + 1, b, M); } bool solve() { LL N_MAX_INVS = N * (N - 1) / 2; LL INV_COUNT = N_MAX_INVS / 2; if (N_MAX_INVS - INV_COUNT != INV_COUNT) { return false; } if (inv(N, INV_COUNT) < K) { return false; } for (int i = 1; i <= N; ++i) { available_values.insert(i); } LL inv_in_score = 0; LL values_left; int start_idx; LL lower_skipped; LL invs_needed; LL max_perms; LL to_skip; score.clear(); while (!available_values.empty()) { values_left = available_values.size() - 1; max_perms = values_left * (values_left - 1) / 2; to_skip = INV_COUNT - inv_in_score - max_perms; if (to_skip > 0) start_idx = binary(1, N, to_skip); else start_idx = 0; auto it=available_values.lower_bound(start_idx); int val = *it; lower_skipped = count_skipped(val); for (; it != available_values.end(); it++) { invs_needed = INV_COUNT - (inv_in_score + lower_skipped); LL invs = inv(values_left, invs_needed); if (invs < K) { K -= invs; } else { val = *it; score.PB(val); add(val); inv_in_score += lower_skipped; available_values.erase(it); break; } ++lower_skipped; } } return true; } void init() { OVER_MAX = 1000 * 1000 * 1000; OVER_MAX *= OVER_MAX; OVER_MAX++; count_inversions(); } void input() { scanf("%lld%lld", &N, &K); S = 1; while (S <= (N+1)) S *= 2; } void count_inversions() { inversions[1].PB(1); for (LL i = 2; i <= MAX_N; ++i) { for (LL j = 0; j <= i * (i - 1) / 2; ++j) { LL val = 0; for (LL l = 0; l < i && j - l >= 0; l++) { val += inv(i - 1, j - l); if (val >= OVER_MAX) { val = OVER_MAX; break; } } inversions[i].PB(val); if (val >= OVER_MAX) { break; } } } } LL inv(int n, LL k) { if (k == 0) { return 1; } LL max_perms = ((LL)n)* (n - 1) / 2; if (k > max_perms) { return 0; } if (k > max_perms / 2) { return inv(n, max_perms - k); } if (k >= inversions[n].size()) { return OVER_MAX; } return inversions[n][k]; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | #include <cstdio> #include <algorithm> #include <set> #include <vector> using namespace std; #define LL long long #define PB push_back #define MAX_N 250020 LL OVER_MAX; LL N, K; vector<LL> inversions[MAX_N]; vector<int> score; set<int> available_values; int T[2000000]; int S; void add(int x) { x += S; while (x) { T[x]++; x /= 2; } } int sum(int x, int y) { x += S; y += S; int W = T[x]; if (x != y) W += T[y]; while (x / 2 != y / 2) { if (x % 2 == 0) W += T[x + 1]; if (y % 2 == 1) W += T[y - 1]; x /= 2; y /= 2; } return W; } void count_inversions(); LL inv(int n, LL k); void init(); void input(); bool solve(); int main() { init(); input(); if (solve()) { printf("TAK\n"); for (int i = 0; i < score.size(); ++i) { printf("%d ", score[i]); } printf("\n"); } else { printf("NIE\n"); } } int count_skipped(int x) { return x - 1 - sum(1, x); } int binary(int a, int b, int M) { if (a == b) return a; int c = (a + b) / 2; int skipped = count_skipped(c); if (skipped >= M) { return binary(a, c, M); } return binary(c + 1, b, M); } bool solve() { LL N_MAX_INVS = N * (N - 1) / 2; LL INV_COUNT = N_MAX_INVS / 2; if (N_MAX_INVS - INV_COUNT != INV_COUNT) { return false; } if (inv(N, INV_COUNT) < K) { return false; } for (int i = 1; i <= N; ++i) { available_values.insert(i); } LL inv_in_score = 0; LL values_left; int start_idx; LL lower_skipped; LL invs_needed; LL max_perms; LL to_skip; score.clear(); while (!available_values.empty()) { values_left = available_values.size() - 1; max_perms = values_left * (values_left - 1) / 2; to_skip = INV_COUNT - inv_in_score - max_perms; if (to_skip > 0) start_idx = binary(1, N, to_skip); else start_idx = 0; auto it=available_values.lower_bound(start_idx); int val = *it; lower_skipped = count_skipped(val); for (; it != available_values.end(); it++) { invs_needed = INV_COUNT - (inv_in_score + lower_skipped); LL invs = inv(values_left, invs_needed); if (invs < K) { K -= invs; } else { val = *it; score.PB(val); add(val); inv_in_score += lower_skipped; available_values.erase(it); break; } ++lower_skipped; } } return true; } void init() { OVER_MAX = 1000 * 1000 * 1000; OVER_MAX *= OVER_MAX; OVER_MAX++; count_inversions(); } void input() { scanf("%lld%lld", &N, &K); S = 1; while (S <= (N+1)) S *= 2; } void count_inversions() { inversions[1].PB(1); for (LL i = 2; i <= MAX_N; ++i) { for (LL j = 0; j <= i * (i - 1) / 2; ++j) { LL val = 0; for (LL l = 0; l < i && j - l >= 0; l++) { val += inv(i - 1, j - l); if (val >= OVER_MAX) { val = OVER_MAX; break; } } inversions[i].PB(val); if (val >= OVER_MAX) { break; } } } } LL inv(int n, LL k) { if (k == 0) { return 1; } LL max_perms = ((LL)n)* (n - 1) / 2; if (k > max_perms) { return 0; } if (k > max_perms / 2) { return inv(n, max_perms - k); } if (k >= inversions[n].size()) { return OVER_MAX; } return inversions[n][k]; } |