1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
using namespace std;

#define MAXN 300000
#define INF 1000000000000000100ULL

int N;
long long K;
long long T;

unsigned long long *mahonian[MAXN];
int mahonian_len[MAXN];
bool mahonian_cut[MAXN];

inline unsigned long long get_mahonian(long long n, long long k) {
    long long maxk = n*(n-1)/2;
    if (k < 0 || k > maxk)
        return 0;
    if (k < mahonian_len[n])
        return mahonian[n][k];
    if (k > maxk - mahonian_len[n])
        return mahonian[n][maxk-k];
    return INF;
}

void compute_mahonian() {
    int i, j, k;
    unsigned long long current_row[1000];
    mahonian[0] = new unsigned long long[1];
    mahonian[0][0] = 0;
    for(i = 1; i <= N; i++) {
        current_row[0] = 1;
        for (j = 1; ; j++) {
            current_row[j] = 0;
            for (k = 0; k <= j; k++) {
                if (k > i-1) break;
                current_row[j] += get_mahonian(i-1, j-k);
                if (current_row[j] >= INF) break;
            }
            if (current_row[j] >= INF) {
                j--;
                mahonian_cut[i] = true;
                break;
            }
            if (current_row[j] == 0) break;
        }
        mahonian_len[i] = j+1;
        mahonian[i] = new unsigned long long[mahonian_len[i]];
        memcpy(mahonian[i], current_row, mahonian_len[i]*sizeof(unsigned long long));
    }
}


#define LEFT(i) (2*i+1)
#define RIGHT(i) (2*i+2)
#define PARENT(i) ((i-1)/2)

int count_tree[2*MAXN];
int start;

void init_count_tree() {
    int i;
    start = 1;
    while (start < N) start *= 2;
    start--;
    
    for (i = start; i < start + N; i++) count_tree[i] = 1;
    for (i = start-1; i >= 0; i--) {
        count_tree[i] = count_tree[LEFT(i)] + count_tree[RIGHT(i)];
    }
}

int tree_get_nth(int n) {
    int node = 0;
    while(node < start) {
        if (n <= count_tree[LEFT(node)]) {
            node = LEFT(node);
        } else {
            n -= count_tree[LEFT(node)];
            node = RIGHT(node);
        }
    }
    return node - start + 1;
}

void tree_remove(int n) {
    int node = start + n - 1;
    while (true) {
        assert(count_tree[node] > 0);
        count_tree[node]--;
        if (node == 0) break;
        node = PARENT(node);
    }
}

int main() {
    int i;
    scanf("%d%lld", &N, &K);
    
    T = (long long) N*(N-1)/2;
    if (T % 2 == 1) {
        printf("NIE\n");
        return 0;
    }
    T /= 2;
    
    compute_mahonian();
    /*
    for (int n = 0; n < N; n++) {
        printf("%d -> %d %d | ", n, mahonian_len[n], mahonian_cut[n]);
        for (int k = 0; k < mahonian_len[n]; k++) 
            printf("%llu ", mahonian[n][k]);
        printf("\n");
    }
    */
    
    if (K > get_mahonian(N, T)) {
        printf("NIE\n");
        return 0;
    }
    
    init_count_tree();
    
    printf("TAK\n");
    for (i = 1; i <= N; i++) {
        long long nth;
        //printf("{%lld %lld %lld}\n", T, (long long)(N-i+1)*(N-i)/2, K);
        if (T == (long long)(N-i+1)*(N-i)/2) {
            nth = N-i+1;
        } else {
            nth = 1;
            /*while (T - (nth - 1) > (long long)(N-i)*(N-i-1)/2) {
                assert(get_mahonian(N-i, T - (nth - 1)) == 0);
                nth++;
            }*/
            //("<{%d %lld}> ", nth, T + 1 - (long long)(N-i)*(N-i-1)/2);
            nth = T + 1 - (long long)(N-i)*(N-i-1)/2;
            if (nth < 1) {
                nth = 1;
            } else if (nth >= N-i+1) {
                nth = N-i+1;
            } else {
                for (; nth <= N-i+1; nth++) {
                    //printf("{%d} ", nth);
                    unsigned long long m = get_mahonian(N-i, T - (nth - 1));
                    //printf("[%lld %lld] {%d %d}", N-i, T - (nth - 1), mahonian_len[N-i], mahonian_cut[N-i]);
                    if (m >= K) break;
                    //printf("(%lld %lld %lld) ", K, T, m);
                    K -= m;
                }
            }
        }
        T -= (nth - 1);
        int l = tree_get_nth(nth);
        //printf("[%d] {%lld} %d \n", nth, T, l);
        printf("%d ", l);
        tree_remove(l);
    }
    printf("\n");

    return 0;
}