1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <algorithm>
#include <cstdio>
#include <set>
#include <vector>
using namespace std;
#define LL long long
#define PB push_back

#define GEN_LVLS 6

struct Block {
  LL s; // pozycja końcowa pierwszego elementu bloku
  LL n; // ilość elementów w bloku
  bool valid;
};

struct Invalidate {
  int idx;
  LL K;
};

struct Invalidate_cmp {
  bool operator()(const Invalidate& a, const Invalidate& b) {
    if (a.K != b.K) {
      return a.K < b.K;
    }
    return a.idx < b.idx;
  }
};

int last_block;
Block blocks[201000];
int b_next[201000]; // pozycja następnego poprawnego bloku

set<Invalidate, Invalidate_cmp> invs;

int N, M, MAX_D;
int D[201000];

LL SUM_NS; // suma B.N * B.S po poprawnych blokach B
LL SUM_NN; // suma B.N * (B.N - 1) po poprawnych blokach B
LL SUM_T; // suma czasów przyjścia
// results[K] = SUM_NS + K * SUM_NN / 2 - SUM_T;
LL T[201000]; // czas przyjścia i-tego klienta (i € {1, …, N})

LL results[1001000];

void input();
void preprocessing();
void solve();

int main() {
  input();
  preprocessing();
  solve();
}

void input() {
  if (scanf("%d %d", &N, &M)) {}
  T[0] = 0; // strażnik
  for (int i = 1; i <= N; ++i) {
    if (scanf("%lld", &T[i])) {}
    SUM_T += T[i];
  }
  for (int i = 0; i < M; ++i) {
    if (scanf("%d", &D[i])) {}
    MAX_D = max(MAX_D, D[i]);
  }
}

Invalidate memoize_invalidation(int idx) {
  if (!blocks[idx].valid || b_next[idx] == idx) {
    Invalidate inv = { .idx = -1, .K = -1 };
    return inv;
  }
  Block& P = blocks[idx];
  Block& Q = blocks[b_next[idx]];
  LL K = Q.s - P.s;
  if (K % P.n == 0) K = K / P.n;
  else K = K / P.n + 1;

  Invalidate inv = { .idx = idx, .K = K };
  invs.insert(inv);
  return inv;
}

bool process_invalidation(Invalidate inv, LL K) {
  int idx = inv.idx;
  if (!blocks[idx].valid || b_next[idx] == idx) {
    return false;
  }

  Block& P = blocks[idx];
  Block& Q = blocks[b_next[idx]];

  LL lp_P = P.s + K * (P.n - 1);
  LL fp_Q = Q.s - K + 1;

  if (lp_P + 1 < fp_Q) { // nie powinno się zdarzyć
    return false;
  }

  if (b_next[b_next[idx]] == b_next[idx]) {
    b_next[idx] = idx;
  } else {
    b_next[idx] = b_next[b_next[idx]];
  }
  Q.valid = false;

  SUM_NS -= Q.s * Q.n;
  SUM_NN -= Q.n * (Q.n - 1);
  SUM_NS -= P.s * P.n;
  SUM_NN -= P.n * (P.n - 1);

  P.n += Q.n;

  SUM_NS += P.s * P.n;
  SUM_NN += P.n * (P.n - 1);
  memoize_invalidation(idx);

  return true;
}

LL calculate_result(LL K) {
  return SUM_NS + K * SUM_NN / 2 - SUM_T;
}

void preprocessing() {
  // bloki dla K = 0:
  last_block = 0; //blocks[last_block] jest ostatni
  blocks[0] = { .s = 0, .n = 1, .valid = true};
  b_next[0] = 0;
  for (int i = 1; i <= N; ++i) {
    if (T[i] == blocks[last_block].s) {
      blocks[last_block].n++;
    } else {
      last_block++;
      blocks[last_block] = { .s = T[i], .n = 1, .valid = true};
      b_next[last_block - 1] = b_next[last_block] = last_block;
    }
  }

  for (int i = 0; i <= last_block; ++i) {
    SUM_NS += blocks[i].n * blocks[i].s;
    SUM_NN += blocks[i].n * (blocks[i].n - 1);
    if (i < last_block) {
      memoize_invalidation(i);
    }
  }
  ///

  for (int K = 1; K <= MAX_D; ++K) {
    int idx = 0;
    while (invs.size() > 0) {
      Invalidate inv = *(invs.begin());
      if (inv.K > K) {
        break;
      }
      invs.erase(invs.begin());
      process_invalidation(inv, K);
    }
    results[K] = calculate_result(K);
  }
}

void solve() {
  for (int i = 0; i < M; ++i) {
    printf("%lld\n", results[D[i]]);
  }
}