#include <algorithm> #include <functional> #include <iostream> #include <limits> #include <numeric> #include <queue> #include <type_traits> #include <utility> #include <vector> using namespace std; namespace { struct Client { int first; int count = 1; mutable Client* parent = this; explicit Client(int id): first{id} { } Client* find() const { if (parent != this) parent = parent->find(); return parent; } friend Client* merge(Client* a, Client* b) { a = a->find(); b = b->find(); if (a == b) return a; if (a->count < b->count) swap(a, b); b->parent = a; a->first = min(a->first, b->first); a->count += b->count; return a; } friend ostream& operator<<(ostream& os, Client const& c) { auto cc = c.find(); return os << cc->first << "…" << cc->first + cc->count - 1 << " (" << cc->waiting() << ")"; } long long waiting() const { return static_cast<long long>(count - 1) * count / 2; } }; struct Oven { int time; long long result; }; constexpr auto inf = numeric_limits<long long>::max(); template <typename A, typename B> constexpr typename common_type<A, B>::type div_up(A a, B b) { return (a + b - 1) / b; } template <typename T> using pq = priority_queue<T, vector<T>, greater<T>>; void solve(vector<long long> times, vector<Oven>& ovens_) { times.insert(times.begin(), 0); int n = times.size(); vector<Client> clients; clients.reserve(n); for (int i = 0; i < n; ++i) { clients.emplace_back(i); } vector<long long> slack(n, inf); pq<pair<long long, int>> slacks; auto set_slack = [&](int i, long long s) { if (slack[i] == s) return; slack[i] = s; slacks.push({s, i}); }; for (int i = 1; i < n; ++i) { set_slack(i, times[i] - times[i - 1]); } long long result = 0; auto update = [&](Client* c, int time) { int l = c->first; int r = c->first + c->count; if (r >= n) return; auto end = times[l] + static_cast<long long>(c->count - 1) * time; auto left = max(0LL, times[r] - time - end); set_slack(r, time + div_up(left, c->count)); }; auto update2 = [&](Client* c, int time) { int l = c->first; int r = c->first + c->count; if (r >= n) return; auto d = clients[r].find(); auto end = times[l] + static_cast<long long>(c->count - 1) * time; auto left = times[r] - time - end; if (left < 0) { result += -left * d->count; } }; vector<Oven*> ovens(ovens_.size()); iota(ovens.begin(), ovens.end(), ovens_.data()); sort(ovens.begin(), ovens.end(), [](Oven const* lhs, Oven const* rhs) { return lhs->time < rhs->time; }); long long waiting = 0; int last_time = 0; auto jump_time = [&](int time) { if (time == last_time) return; result += waiting * (time - last_time); last_time = time; }; for (Oven* o: ovens) { while (!slacks.empty() && slacks.top().first <= o->time) { auto t = slacks.top().first; auto i = slacks.top().second; slacks.pop(); if (clients[i].find()->first != i || slack[i] != t) continue; jump_time(t); auto a = clients[i - 1].find(); auto b = clients[i].find(); update2(a, t); waiting -= a->waiting(); waiting -= b->waiting(); auto c = merge(a, b); update(c, t); waiting += c->waiting(); } jump_time(o->time); o->result = result; } } } int main() { iostream::sync_with_stdio(false); cin.tie(nullptr); int n, m; cin >> n >> m; vector<long long> times(n); for (auto& t: times) cin >> t; vector<Oven> ovens(m); for (auto& o: ovens) cin >> o.time; solve(move(times), ovens); for (auto const& o: ovens) { cout << o.result << '\n'; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #include <algorithm> #include <functional> #include <iostream> #include <limits> #include <numeric> #include <queue> #include <type_traits> #include <utility> #include <vector> using namespace std; namespace { struct Client { int first; int count = 1; mutable Client* parent = this; explicit Client(int id): first{id} { } Client* find() const { if (parent != this) parent = parent->find(); return parent; } friend Client* merge(Client* a, Client* b) { a = a->find(); b = b->find(); if (a == b) return a; if (a->count < b->count) swap(a, b); b->parent = a; a->first = min(a->first, b->first); a->count += b->count; return a; } friend ostream& operator<<(ostream& os, Client const& c) { auto cc = c.find(); return os << cc->first << "…" << cc->first + cc->count - 1 << " (" << cc->waiting() << ")"; } long long waiting() const { return static_cast<long long>(count - 1) * count / 2; } }; struct Oven { int time; long long result; }; constexpr auto inf = numeric_limits<long long>::max(); template <typename A, typename B> constexpr typename common_type<A, B>::type div_up(A a, B b) { return (a + b - 1) / b; } template <typename T> using pq = priority_queue<T, vector<T>, greater<T>>; void solve(vector<long long> times, vector<Oven>& ovens_) { times.insert(times.begin(), 0); int n = times.size(); vector<Client> clients; clients.reserve(n); for (int i = 0; i < n; ++i) { clients.emplace_back(i); } vector<long long> slack(n, inf); pq<pair<long long, int>> slacks; auto set_slack = [&](int i, long long s) { if (slack[i] == s) return; slack[i] = s; slacks.push({s, i}); }; for (int i = 1; i < n; ++i) { set_slack(i, times[i] - times[i - 1]); } long long result = 0; auto update = [&](Client* c, int time) { int l = c->first; int r = c->first + c->count; if (r >= n) return; auto end = times[l] + static_cast<long long>(c->count - 1) * time; auto left = max(0LL, times[r] - time - end); set_slack(r, time + div_up(left, c->count)); }; auto update2 = [&](Client* c, int time) { int l = c->first; int r = c->first + c->count; if (r >= n) return; auto d = clients[r].find(); auto end = times[l] + static_cast<long long>(c->count - 1) * time; auto left = times[r] - time - end; if (left < 0) { result += -left * d->count; } }; vector<Oven*> ovens(ovens_.size()); iota(ovens.begin(), ovens.end(), ovens_.data()); sort(ovens.begin(), ovens.end(), [](Oven const* lhs, Oven const* rhs) { return lhs->time < rhs->time; }); long long waiting = 0; int last_time = 0; auto jump_time = [&](int time) { if (time == last_time) return; result += waiting * (time - last_time); last_time = time; }; for (Oven* o: ovens) { while (!slacks.empty() && slacks.top().first <= o->time) { auto t = slacks.top().first; auto i = slacks.top().second; slacks.pop(); if (clients[i].find()->first != i || slack[i] != t) continue; jump_time(t); auto a = clients[i - 1].find(); auto b = clients[i].find(); update2(a, t); waiting -= a->waiting(); waiting -= b->waiting(); auto c = merge(a, b); update(c, t); waiting += c->waiting(); } jump_time(o->time); o->result = result; } } } int main() { iostream::sync_with_stdio(false); cin.tie(nullptr); int n, m; cin >> n >> m; vector<long long> times(n); for (auto& t: times) cin >> t; vector<Oven> ovens(m); for (auto& o: ovens) cin >> o.time; solve(move(times), ovens); for (auto const& o: ovens) { cout << o.result << '\n'; } return 0; } |