#include <algorithm> #include <stdio.h> #include <vector> constexpr auto GUARD = std::numeric_limits<int>::max(); struct Square { Square(int x, int y, int index) : m_x(x), m_y(y), m_index(index), m_size(GUARD) { } int m_x; int m_y; int m_index; int m_size; bool operator!=(const Square &s) const { return m_index != s.m_index; } void print() const { printf("SQUARE X: %3d, Y: %3d, SIZE: %10d, INDEX: %3d\n", m_x, m_y, m_size, m_index + 1); } }; bool isFullRectangle(const std::vector<Square> &squares) { const auto cmpMinX = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x + s1.m_size <= s2.m_x + s2.m_size; }; const auto cmpMinY = [](const Square &s1, const Square &s2) { return s1.m_y <= s2.m_y; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y + s1.m_size <= s2.m_y + s2.m_size; }; const auto minX = std::min_element(std::begin(squares), std::end(squares), cmpMinX); const auto maxX = std::max_element(std::begin(squares), std::end(squares), cmpMaxX); const auto minY = std::min_element(std::begin(squares), std::end(squares), cmpMinY); const auto maxY = std::max_element(std::begin(squares), std::end(squares), cmpMaxY); long long int sum = 0; for (auto s : squares) sum += static_cast<long long int>(s.m_size) * static_cast<long long int>(s.m_size); const long long int width = maxX->m_x + maxX->m_size - minX->m_x; const long long int height = maxY->m_y + maxY->m_size - minY->m_y; const long long int correctedSum = width * height; return sum == correctedSum; } int countSizeWithNotSetSquares(const Square &sCount, const Square &sLimit) { if (sCount.m_x <= sLimit.m_x && sCount.m_y <= sLimit.m_y) return std::max(sLimit.m_x - sCount.m_x, sLimit.m_y - sCount.m_y); return GUARD; } int countSizeWithSetSquares(const Square &sCount, const Square &sLimit) { //if (sCount.m_size != GUARD || sLimit.m_size == GUARD) if (sLimit.m_size == GUARD) return GUARD; const auto topLeftX = sLimit.m_x; const auto topLeftY = sLimit.m_y + sLimit.m_size; const auto bottomRightX = sLimit.m_x + sLimit.m_size; const auto bottomRightY = sLimit.m_y; int size1 = GUARD; int size2 = GUARD; int size3 = GUARD; if (sCount.m_x <= topLeftX && sLimit.m_y <= sCount.m_y && sCount.m_y < topLeftY) size1 = topLeftX - sCount.m_x; if (sCount.m_y <= bottomRightY && sLimit.m_x <= sCount.m_x && sCount.m_x < bottomRightX) size2 = bottomRightY - sCount.m_y; if (sCount.m_x < sLimit.m_x && sCount.m_y < sLimit.m_y) size3 = std::max(sLimit.m_x - sCount.m_x, sLimit.m_y - sCount.m_y); // if (sCount.m_x == 7 && sCount.m_y == 1) // { // printf("COUNT: "); // sCount.print(); // printf("LIMIT: "); // sLimit.print(); // printf("%d %d %d\n", size1, size2, size3); // } return std::min(std::min(size1, sCount.m_size), std::min(size2, size3)); } bool finish(std::vector<Square> squares, std::vector<Square> toSetSquares, const int xLimit) { std::vector<Square> setSuqares; // printf("TO SET: %d, SET: %d\n", toSetSquares.size(), squares.size()); // printf("LIMIT X: %d\n", xLimit); while (!toSetSquares.empty()) { auto sCount = toSetSquares.back(); toSetSquares.pop_back(); int size = xLimit - sCount.m_x; for (const auto &s2 : setSuqares) { const auto x = s2.m_x; const auto y = s2.m_y + s2.m_size; // printf(" "); // s2.print(); if (sCount.m_x <= x && sCount.m_y < y) { const auto newSize = x - sCount.m_x; // printf(" %d\n", newSize); size = std::min(size, newSize); } } sCount.m_size = size; // sCount.print(); // printf("\n"); setSuqares.push_back(sCount); } std::copy(setSuqares.begin(), setSuqares.end(), std::back_inserter(squares)); if (isFullRectangle(squares)) { const auto sortSetCmd = [](const Square &s1, const Square &s2) { return s1.m_index <= s2.m_index; }; std::sort(squares.begin(), squares.end(), sortSetCmd); printf("TAK"); for (auto s : squares) printf(" %d", s.m_size); printf("\n"); return true; } return false; } bool solveSingle(std::vector<Square> squares, std::vector<Square> toSetSquares) { const auto s = toSetSquares.back(); const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x + s1.m_size <= s2.m_x + s2.m_size; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y + s1.m_size <= s2.m_y + s2.m_size; }; const auto maxX = std::max_element(std::begin(squares), std::end(squares), cmpMaxX); const auto maxY = std::max_element(std::begin(squares), std::end(squares), cmpMaxY); const auto x = maxX->m_x + maxX->m_size; const auto y = maxY->m_y + maxY->m_size; if (s.m_x < x && finish(squares, toSetSquares, x)) return true; if (s.m_y < y && finish(squares, toSetSquares, s.m_x + y - maxY->m_y)) return true; return false; } void fillSizeIfCan(std::vector<Square> &squares) { for (auto &s1 : squares) for (const auto &s2 : squares) if (s1 != s2) s1.m_size = std::min(s1.m_size, countSizeWithSetSquares(s1, s2)); } void solve(std::vector<Square> &squares) { for (auto &s1 : squares) for (const auto &s2 : squares) if (s1 != s2) s1.m_size = std::min(s1.m_size, countSizeWithNotSetSquares(s1, s2)); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("\n"); fillSizeIfCan(squares); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("\n"); const auto squareSetCmd = [](const Square &s) { return s.m_size == GUARD; }; const auto sortSetCmd = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; std::vector<Square> toSetSuqares; std::copy_if(squares.begin(), squares.end(), std::back_inserter(toSetSuqares), squareSetCmd); squares.erase(std::remove_if(squares.begin(), squares.end(), squareSetCmd), squares.end()); std::sort(toSetSuqares.begin(), toSetSuqares.end(), sortSetCmd); const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y <= s2.m_y; }; const auto maxX = std::max_element(std::begin(toSetSuqares), std::end(toSetSuqares), cmpMaxX); const auto maxY = std::max_element(std::begin(toSetSuqares), std::end(toSetSuqares), cmpMaxY); // maxX->print(); // maxY->print(); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("TO SET:\n"); // for (auto s : toSetSuqares) // s.print(); if (toSetSuqares.size() == 1) { if (solveSingle(squares, toSetSuqares)) return; } else { for (const auto &s : toSetSuqares) { if (s != *maxX) { const auto limitX = maxX->m_x + s.m_y - maxX->m_y; if (finish(squares, toSetSuqares, limitX)) return; } if (s != *maxY) { const auto topY = maxY->m_y + s.m_x - maxY->m_x; const auto limitX = maxX->m_x + topY - maxX->m_y; if (finish(squares, toSetSuqares, limitX)) return; } } } printf("NIE\n"); } int main(int, char **) { int t, n, x, y; scanf("%d", &t); for (int i = 0; i < t; ++i) { std::vector<Square> squares; scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d %d", &x, &y); squares.emplace_back(x, y, i); } if (squares.size() == 1) printf("TAK 1\n"); else solve(squares); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | #include <algorithm> #include <stdio.h> #include <vector> constexpr auto GUARD = std::numeric_limits<int>::max(); struct Square { Square(int x, int y, int index) : m_x(x), m_y(y), m_index(index), m_size(GUARD) { } int m_x; int m_y; int m_index; int m_size; bool operator!=(const Square &s) const { return m_index != s.m_index; } void print() const { printf("SQUARE X: %3d, Y: %3d, SIZE: %10d, INDEX: %3d\n", m_x, m_y, m_size, m_index + 1); } }; bool isFullRectangle(const std::vector<Square> &squares) { const auto cmpMinX = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x + s1.m_size <= s2.m_x + s2.m_size; }; const auto cmpMinY = [](const Square &s1, const Square &s2) { return s1.m_y <= s2.m_y; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y + s1.m_size <= s2.m_y + s2.m_size; }; const auto minX = std::min_element(std::begin(squares), std::end(squares), cmpMinX); const auto maxX = std::max_element(std::begin(squares), std::end(squares), cmpMaxX); const auto minY = std::min_element(std::begin(squares), std::end(squares), cmpMinY); const auto maxY = std::max_element(std::begin(squares), std::end(squares), cmpMaxY); long long int sum = 0; for (auto s : squares) sum += static_cast<long long int>(s.m_size) * static_cast<long long int>(s.m_size); const long long int width = maxX->m_x + maxX->m_size - minX->m_x; const long long int height = maxY->m_y + maxY->m_size - minY->m_y; const long long int correctedSum = width * height; return sum == correctedSum; } int countSizeWithNotSetSquares(const Square &sCount, const Square &sLimit) { if (sCount.m_x <= sLimit.m_x && sCount.m_y <= sLimit.m_y) return std::max(sLimit.m_x - sCount.m_x, sLimit.m_y - sCount.m_y); return GUARD; } int countSizeWithSetSquares(const Square &sCount, const Square &sLimit) { //if (sCount.m_size != GUARD || sLimit.m_size == GUARD) if (sLimit.m_size == GUARD) return GUARD; const auto topLeftX = sLimit.m_x; const auto topLeftY = sLimit.m_y + sLimit.m_size; const auto bottomRightX = sLimit.m_x + sLimit.m_size; const auto bottomRightY = sLimit.m_y; int size1 = GUARD; int size2 = GUARD; int size3 = GUARD; if (sCount.m_x <= topLeftX && sLimit.m_y <= sCount.m_y && sCount.m_y < topLeftY) size1 = topLeftX - sCount.m_x; if (sCount.m_y <= bottomRightY && sLimit.m_x <= sCount.m_x && sCount.m_x < bottomRightX) size2 = bottomRightY - sCount.m_y; if (sCount.m_x < sLimit.m_x && sCount.m_y < sLimit.m_y) size3 = std::max(sLimit.m_x - sCount.m_x, sLimit.m_y - sCount.m_y); // if (sCount.m_x == 7 && sCount.m_y == 1) // { // printf("COUNT: "); // sCount.print(); // printf("LIMIT: "); // sLimit.print(); // printf("%d %d %d\n", size1, size2, size3); // } return std::min(std::min(size1, sCount.m_size), std::min(size2, size3)); } bool finish(std::vector<Square> squares, std::vector<Square> toSetSquares, const int xLimit) { std::vector<Square> setSuqares; // printf("TO SET: %d, SET: %d\n", toSetSquares.size(), squares.size()); // printf("LIMIT X: %d\n", xLimit); while (!toSetSquares.empty()) { auto sCount = toSetSquares.back(); toSetSquares.pop_back(); int size = xLimit - sCount.m_x; for (const auto &s2 : setSuqares) { const auto x = s2.m_x; const auto y = s2.m_y + s2.m_size; // printf(" "); // s2.print(); if (sCount.m_x <= x && sCount.m_y < y) { const auto newSize = x - sCount.m_x; // printf(" %d\n", newSize); size = std::min(size, newSize); } } sCount.m_size = size; // sCount.print(); // printf("\n"); setSuqares.push_back(sCount); } std::copy(setSuqares.begin(), setSuqares.end(), std::back_inserter(squares)); if (isFullRectangle(squares)) { const auto sortSetCmd = [](const Square &s1, const Square &s2) { return s1.m_index <= s2.m_index; }; std::sort(squares.begin(), squares.end(), sortSetCmd); printf("TAK"); for (auto s : squares) printf(" %d", s.m_size); printf("\n"); return true; } return false; } bool solveSingle(std::vector<Square> squares, std::vector<Square> toSetSquares) { const auto s = toSetSquares.back(); const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x + s1.m_size <= s2.m_x + s2.m_size; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y + s1.m_size <= s2.m_y + s2.m_size; }; const auto maxX = std::max_element(std::begin(squares), std::end(squares), cmpMaxX); const auto maxY = std::max_element(std::begin(squares), std::end(squares), cmpMaxY); const auto x = maxX->m_x + maxX->m_size; const auto y = maxY->m_y + maxY->m_size; if (s.m_x < x && finish(squares, toSetSquares, x)) return true; if (s.m_y < y && finish(squares, toSetSquares, s.m_x + y - maxY->m_y)) return true; return false; } void fillSizeIfCan(std::vector<Square> &squares) { for (auto &s1 : squares) for (const auto &s2 : squares) if (s1 != s2) s1.m_size = std::min(s1.m_size, countSizeWithSetSquares(s1, s2)); } void solve(std::vector<Square> &squares) { for (auto &s1 : squares) for (const auto &s2 : squares) if (s1 != s2) s1.m_size = std::min(s1.m_size, countSizeWithNotSetSquares(s1, s2)); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("\n"); fillSizeIfCan(squares); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("\n"); const auto squareSetCmd = [](const Square &s) { return s.m_size == GUARD; }; const auto sortSetCmd = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; std::vector<Square> toSetSuqares; std::copy_if(squares.begin(), squares.end(), std::back_inserter(toSetSuqares), squareSetCmd); squares.erase(std::remove_if(squares.begin(), squares.end(), squareSetCmd), squares.end()); std::sort(toSetSuqares.begin(), toSetSuqares.end(), sortSetCmd); const auto cmpMaxX = [](const Square &s1, const Square &s2) { return s1.m_x <= s2.m_x; }; const auto cmpMaxY = [](const Square &s1, const Square &s2) { return s1.m_y <= s2.m_y; }; const auto maxX = std::max_element(std::begin(toSetSuqares), std::end(toSetSuqares), cmpMaxX); const auto maxY = std::max_element(std::begin(toSetSuqares), std::end(toSetSuqares), cmpMaxY); // maxX->print(); // maxY->print(); // printf("SETED:\n"); // for (auto s : squares) // s.print(); // printf("TO SET:\n"); // for (auto s : toSetSuqares) // s.print(); if (toSetSuqares.size() == 1) { if (solveSingle(squares, toSetSuqares)) return; } else { for (const auto &s : toSetSuqares) { if (s != *maxX) { const auto limitX = maxX->m_x + s.m_y - maxX->m_y; if (finish(squares, toSetSuqares, limitX)) return; } if (s != *maxY) { const auto topY = maxY->m_y + s.m_x - maxY->m_x; const auto limitX = maxX->m_x + topY - maxX->m_y; if (finish(squares, toSetSuqares, limitX)) return; } } } printf("NIE\n"); } int main(int, char **) { int t, n, x, y; scanf("%d", &t); for (int i = 0; i < t; ++i) { std::vector<Square> squares; scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d %d", &x, &y); squares.emplace_back(x, y, i); } if (squares.size() == 1) printf("TAK 1\n"); else solve(squares); } return 0; } |