#ifndef MW_HEADER #define MW_HEADER #include <bits/stdc++.h> #include "message.h" using namespace std; #define FOR(i,a,b) for (LL i = (a); i < (b); ++i) #define FORD(i,b,a) for (LL i = (LL)(b)-1; i >= (a); --i) #define REP(i,N) FOR(i,0,N) #define FOREACH(i,x) for (__typeof((x).begin()) i=(x).begin(); i!=(x).end(); ++i) #define st first #define nd second #define pb push_back typedef pair<int, int> PII; typedef long long LL; typedef unsigned long long ULL; #endif LL NODES = NumberOfNodes(), ME = MyNodeId(); LL __N, START, END, NEXT, PREV; LL get_start(int node) { return __N/NODES * node + min(__N%NODES, (LL)node); } LL get_end(int node) { return get_start(node+1); } /** Every node has at least factor items to process */ void reduce_nodes(LL N, int factor = 1) { NODES = min(NODES, max(N/factor, 1LL)); if (ME >= NODES) exit(0); NEXT = (ME + 1)%NODES, PREV=(ME+NODES-1)%NODES; __N = N; START = get_start(ME), END = get_end(ME); } template <typename Container> struct is_container : false_type { }; template <typename... Ts> struct is_container<list<Ts...> > : true_type { }; template <typename... Ts> struct is_container<vector<Ts...> > : true_type { }; // template <typename... Ts> struct is_container<set<Ts...> > : true_type { }; // template <typename... Ts> struct is_container<map<Ts...> > : true_type { }; template <typename Container> struct is_pair : false_type { }; template <typename... Ts> struct is_pair<pair<Ts...>> : true_type { }; template <typename Container> struct is_triple : false_type { }; template <typename T1, typename T2, typename T3> struct is_triple<tuple<T1,T2,T3>> : true_type { }; template<typename T> void Put(int target, typename enable_if<!is_class<T>::value, const T&>::type value) { T::not_implemented; } template<typename T> void Put(int target, typename enable_if<is_container<T>::value, const T&>::type vec); template<> void Put<bool>(int target, const bool& value) { PutChar(target, value); } template<> void Put<char>(int target, const char& value) { PutChar(target, value); } template<> void Put<int>(int target, const int& value) { PutInt(target, value); } template<> void Put<unsigned int>(int target, const unsigned int& value) { PutInt(target, value); } template<> void Put<long long>(int target, const long long& value) { PutLL(target, value); } template<> void Put<unsigned long long>(int target, const unsigned long long& value) { PutLL(target, value); } // template<typename T> void Put(int target, typename enable_if<is_class<T>::value && !is_container<T>::value && !is_pair<T>::value, const T&>::type value){ // char data[sizeof(T)]; memcpy(data, &value, sizeof(T)); // REP(i, (int)sizeof(T)) PutChar(target, data[i]); // } template<typename T> void Put(int target, typename enable_if<is_pair<T>::value, const T&>::type pair) { Put<typename T::first_type>(target, pair.first); Put<typename T::second_type>(target, pair.second); } template<typename T> void Put(int target, typename enable_if<is_triple<T>::value, const T&>::type triple) { Put<typename tuple_element<0, T>::type>(target, get<0>(triple)); Put<typename tuple_element<1, T>::type>(target, get<1>(triple)); Put<typename tuple_element<2, T>::type>(target, get<2>(triple)); } const int MAX_MESSAGE_SIZE = 62000; const int PARTS = -1; template<typename T> void Put(int target, typename enable_if<is_container<T>::value, const T&>::type vec) { int data_size = vec.size() * sizeof(typename T::value_type); int parts = 1 + data_size / MAX_MESSAGE_SIZE; int part_size = (vec.size() + parts-1) / parts; Put<int>(target, parts); for (int p = 0; p < parts; ++p) { int start = p*part_size; int end = min((int)vec.size(), (p+1)*part_size); Put<int>(target, end-start); FOR(i, start, end) { Put<typename T::value_type>(target, vec[i]); } if (p < parts-1) { Send(target); } } } template<typename T> typename enable_if<!is_class<T>::value, T>::type Get(int source) { T::not_implemented; } template<typename T> typename enable_if<is_container<T>::value, T>::type Get(int source); template<> bool Get<bool>(int source) { return GetChar(source); } template<> char Get<char>(int source) { return GetChar(source); } template<> int Get<int>(int source) { return GetInt(source); } template<> unsigned int Get<unsigned int>(int source) { return GetInt(source); } template<> long long Get<long long>(int source) { return GetLL(source); } template<> unsigned long long Get<unsigned long long>(int source) { return GetLL(source); } // template<typename T> typename enable_if<is_class<T>::value && !is_container<T>::value && !is_pair<T>::value, T>::type Get(int source) { // char data[sizeof(T)]; REP(i, (int)sizeof(T)) data[i] = GetChar(source); // T value; memcpy(&value, data, sizeof(T)); // return value; // } template<typename T> typename enable_if<is_pair<T>::value, T>::type Get(int source) { auto f = Get<typename T::first_type>(source); auto s = Get<typename T::second_type>(source); return T(f, s); } template<typename T> typename enable_if<is_triple<T>::value, T>::type Get(int source) { auto f = Get<typename tuple_element<0, T>::type>(source); auto s = Get<typename tuple_element<1, T>::type>(source); auto t = Get<typename tuple_element<2, T>::type>(source); return T(f, s, t); } template<typename T> typename enable_if<is_container<T>::value, T>::type Get(int source) { int parts = GetInt(source); vector<typename T::value_type> result; REP(p, parts) { if (p > 0) Receive(source); int size = GetInt(source); REP(i,size) result.push_back(Get<typename T::value_type>(source)); } return T(result.begin(), result.end()); } template<typename T> void Broadcast(int source, T& value) { if (ME == source) REP(i,NODES) { Put<T>(i, value); Send(i); } Receive(source); value = Get<T>(source); } template<typename T> void BroadcastTree(int source, T& value) { int relative = (ME - source + NODES) % NODES; if (relative) { int from = (source + (relative-1) / 2) % NODES; Receive(from); value = Get<T>(from); } FOR(i,1,3) if (2*relative + i < NODES) { int to = ((source + 2*relative + i) % NODES); Put<T>(to, value); Send(to); } } template<typename T, typename Fn> void Accumulate(int target, const T& value, Fn fn) { Put<T>(target, value); Send(target); if (ME == target) REP(i, NODES) { Receive(i); fn(Get<T>(i)); } } /** ~5ms for adding ints */ template<typename T, typename Fn> T AccumulateTree(int target, T value, Fn fn) { int relative = (ME - target + NODES) % NODES; for (int b = 1; b < NODES; b <<= 1) { if (relative&b) { int to = (target + relative - b + NODES) % NODES; Put<T>(to, value); Send(to); break; } else if (relative + b < NODES) { int from = (target + relative + b) % NODES; Receive(from); value = fn(value, Get<T>(from)); } } return value; } template<typename T, typename Compute, typename Acc> T AccumulateValues(int target, Compute fn, Acc acc) { T result = fn(START); FOR(i,START+1,END) result = acc(result, fn(i)); return AccumulateTree(target, result, acc); } template<typename T, typename Compute> vector<T> AccumulateVector(int target, Compute fn) { vector<T> local; FOR(i,START, END) local.pb(fn(i)); vector<T> acc; Accumulate(target, local, [&](const vector<T>& vec) {acc.insert(acc.end(), vec.begin(), vec.end());}); return acc; } template<typename T> vector<T> Collect(int target, const T& value) { vector<T> acc; Accumulate(target, value, [&](const T& val) { acc.pb(val); }); return acc; } // ^^^ CUT HERE ^^^ /** * Intervals are left_bound-closed and right_bound-open: [L, R) */ template<typename Config> class bit { template<typename TConfig = Config> struct range_updates_config { template<class U> static char (&test(typename U::TRangeUpdate const*))[1]; template<class U> static char (&test(...))[2]; template<class U = TConfig> constexpr static typename U::TRangeUpdate _neutral(typename U::TRangeUpdate const*) { return U::neutral_range_update(); } template<class U = TConfig> constexpr static void* _neutral(...) { return 0; } static const bool enabled = (sizeof(test<TConfig>(0)) == 1); typedef decltype(_neutral<TConfig>(0)) Type; constexpr static Type neutral() { return _neutral<TConfig>(0); } }; typedef typename Config::TData TData; typedef typename range_updates_config<Config>::Type TRangeUpdate; typedef const function<bool(const TData&)>& Predicate; int size; /** Interval represented by the node */ vector<pair<int, int>> bounds; vector<TData> data; vector<TRangeUpdate> range_updates; bool __intersects(int L, int R, int idx) { return bounds[idx].first < R && L < bounds[idx].second; } bool __covers(int L, int R, int idx) { return L <= bounds[idx].first && bounds[idx].second <= R; } void __update_range_single(int idx, const TRangeUpdate& op) { Config::apply(op, data[idx], bounds[idx].first, bounds[idx].second); Config::compose_range_updates(op, range_updates[idx]); } template<class T = Config, typename enable_if<!range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) {} template<class T = Config, typename enable_if<range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) { if (idx < size) { __update_range_single(2*idx, range_updates[idx]); __update_range_single(2*idx + 1, range_updates[idx]); range_updates[idx] = Config::neutral_range_update(); } } void __update_range(int L, int R, const TRangeUpdate& op, int idx) { if (!__intersects(L, R, idx)) { return; } if (__covers(L, R, idx)) { __update_range_single(idx, op); return; } __push_range_update(idx); __update_range(L, R, op, 2*idx); __update_range(L, R, op, 2*idx+1); data[idx] = Config::merge(data[2*idx], data[2*idx+1]); } TData __query_range(int L, int R, int idx) { if (!__intersects(L, R, idx)) { return Config::neutral(); } if (__covers(L, R, idx)) { return data[idx]; } __push_range_update(idx); return Config::merge( __query_range(L, R, 2*idx), __query_range(L, R, 2*idx+1) ); } /** * If last=1, the last matching is returned. If last=0, the first one. */ int __find(int L, int R, Predicate fn, int idx, int last) { if (!__intersects(L, R, idx) || !fn(data[idx])) { return -1; } if (idx >= size) { return idx - size; } __push_range_update(idx); int preferred = __find(L, R, fn, 2*idx+last, last); if (preferred != -1) { return preferred; } return __find(L, R, fn, 2*idx+(last^1), last); } public: bit(int _size = 0) { size = 1; while (size < _size) { size <<= 1; } data = vector<TData>(2*size, Config::neutral()); range_updates = vector<TRangeUpdate>(2*size, range_updates_config<Config>::neutral()); bounds = vector<pair<int, int>>(2*size); for (int i = 0; i < size; ++i) { bounds[i+size] = {i, i+1}; } for (int i = size - 1; i >= 0; --i) { bounds[i] = {bounds[2*i].first, bounds[2*i+1].second}; } } void update_range(int L, int R, const TRangeUpdate& op) { __update_range(L, R, op, 1); } void update_single(int pos, const TRangeUpdate& op) { update_range(pos, pos+1, op); } TData query_range(int L, int R) { return __query_range(L, R, 1); } TData query_single(int pos) { return query_range(pos, pos+1); } void set(int pos, TData value) { int idx = size + pos; if (range_updates_config<Config>::enabled) { idx = 1; while (idx < size) { __push_range_update(idx); idx = 2*idx + (pos >= bounds[2*idx+1].first); } } // Push pending operations data[idx] = value; idx >>= 1; while (idx > 0) { data[idx] = Config::merge(data[2*idx], data[2*idx+1]); idx >>= 1; } } /** @returns -1 if no element found */ int first_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 0); } int first_which(Predicate contain_check) { return first_which(0, size, contain_check); } /** @returns -1 if no element found */ int last_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 1); } int last_which(Predicate contain_check) { return last_which(0, size, contain_check); } }; struct bit_config { typedef struct { LL sum_a; LL sum_b; int min_a; int min_b; LL sum_a_mul_b; } TData; static TData neutral() { return { (LL)0, (LL)0, (int)1e5, (int)1e5, (LL)0 }; } static TData merge(const TData& left, const TData& right) { return { left.sum_a + right.sum_a, left.sum_b + right.sum_b, min(left.min_a, right.min_a), min(left.min_b, right.min_b), left.sum_a_mul_b + right.sum_a_mul_b, }; } typedef struct { int a; int b; } TRangeUpdate; static void apply(const TRangeUpdate& op, TData& value, int A, int B) { value.sum_a = min(value.sum_a, op.a * (LL)(B-A)); value.sum_b = min(value.sum_b, op.b * (LL)(B-A)); value.min_a = min(value.min_a, op.a); value.min_b = min(value.min_b, op.b); value.sum_a_mul_b = min( min(value.sum_a_mul_b, (B-A) * (LL)op.a * (LL)op.b), min(value.sum_a * op.b, value.sum_b * op.a) ); } static void compose_range_updates(const TRangeUpdate& outer, TRangeUpdate& inner) { inner.a = min(inner.a, outer.a); inner.b = min(inner.b, outer.b); } static TRangeUpdate neutral_range_update() { return { (LL)1e5, (LL)1e5 }; } }; #include "dzialka.h" bool data[800][75000]; int taken_in_column[75000]; typedef pair<LL, vector<tuple<int, int, bool>>> PartialResult; int main() { // ios_base::sync_with_stdio(0); int H = GetFieldHeight(), W = GetFieldWidth(); reduce_nodes(H); FOR(i,START,END) { REP(j,W) data[i-START][j] = IsUsableCell(i, j); } int N = END-START; REP(j,W) taken_in_column[j] = 0; LL result = 0; REP(i,N) { vector<PII> taken = {{-1, N}}; int sum_taken = 0; REP(j,W) { if (!data[i][j]) taken_in_column[j] = i+1; while (taken.back().nd < taken_in_column[j]) { sum_taken -= (taken.back().st - taken[taken.size()-2].st) * taken.back().nd; taken.pop_back(); } sum_taken += (j - taken.back().st) * taken_in_column[j]; taken.pb({j, taken_in_column[j]}); result += (i+1) * (j + 1) - sum_taken; } } PartialResult res; res.first = result; REP(j,W) { int top = 0, bottom = 0; REP(i,N) { if (data[i][j]) { ++bottom; if (top == i) ++top; } else { bottom = 0; } } res.second.pb(make_tuple(top, bottom, top == N)); } //printf("%d %d\n", START, END); res = AccumulateTree(0, res, [&](PartialResult& top, const PartialResult& bottom) { LL result = top.st + bottom.st; bit<bit_config> BIT(W); REP(j,W) { int a = get<1>(top.nd[j]); int b = get<0>(bottom.nd[j]); BIT.set(j, {a, b, a, b, a*(LL)b}); int k = BIT.last_which(0, j, [&](const bit_config::TData& dt) { return dt.min_a <= a; }); BIT.update_range(k+1, j+1, {a, (int)1e5}); // printf("a=%d [%d, %d]\n",a, k+1, j); k = BIT.last_which(0, j, [&](const bit_config::TData& dt) { return dt.min_b <= b; }); BIT.update_range(k+1, j+1, {(int)1e5, b}); // printf("b=%d [%d, %d]\n",b, k+1, j); // REP(k,j+1) printf("%d %lld %lld\n", k, BIT.query_single(k).sum_a, BIT.query_single(k).sum_b); result += BIT.query_range(0, j+1).sum_a_mul_b; } top.st = result; REP(j,W) { get<0>(top.nd[j]) = get<2>(top.nd[j]) ? get<0>(top.nd[j]) + get<0>(bottom.nd[j]) : get<0>(top.nd[j]); get<1>(top.nd[j]) = get<2>(bottom.nd[j]) ? get<1>(bottom.nd[j]) + get<1>(top.nd[j]) : get<1>(bottom.nd[j]); get<2>(top.nd[j]) &= get<2>(bottom.nd[j]); } return top; }); if (ME == 0) { printf("%lld\n", res.st); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | #ifndef MW_HEADER #define MW_HEADER #include <bits/stdc++.h> #include "message.h" using namespace std; #define FOR(i,a,b) for (LL i = (a); i < (b); ++i) #define FORD(i,b,a) for (LL i = (LL)(b)-1; i >= (a); --i) #define REP(i,N) FOR(i,0,N) #define FOREACH(i,x) for (__typeof((x).begin()) i=(x).begin(); i!=(x).end(); ++i) #define st first #define nd second #define pb push_back typedef pair<int, int> PII; typedef long long LL; typedef unsigned long long ULL; #endif LL NODES = NumberOfNodes(), ME = MyNodeId(); LL __N, START, END, NEXT, PREV; LL get_start(int node) { return __N/NODES * node + min(__N%NODES, (LL)node); } LL get_end(int node) { return get_start(node+1); } /** Every node has at least factor items to process */ void reduce_nodes(LL N, int factor = 1) { NODES = min(NODES, max(N/factor, 1LL)); if (ME >= NODES) exit(0); NEXT = (ME + 1)%NODES, PREV=(ME+NODES-1)%NODES; __N = N; START = get_start(ME), END = get_end(ME); } template <typename Container> struct is_container : false_type { }; template <typename... Ts> struct is_container<list<Ts...> > : true_type { }; template <typename... Ts> struct is_container<vector<Ts...> > : true_type { }; // template <typename... Ts> struct is_container<set<Ts...> > : true_type { }; // template <typename... Ts> struct is_container<map<Ts...> > : true_type { }; template <typename Container> struct is_pair : false_type { }; template <typename... Ts> struct is_pair<pair<Ts...>> : true_type { }; template <typename Container> struct is_triple : false_type { }; template <typename T1, typename T2, typename T3> struct is_triple<tuple<T1,T2,T3>> : true_type { }; template<typename T> void Put(int target, typename enable_if<!is_class<T>::value, const T&>::type value) { T::not_implemented; } template<typename T> void Put(int target, typename enable_if<is_container<T>::value, const T&>::type vec); template<> void Put<bool>(int target, const bool& value) { PutChar(target, value); } template<> void Put<char>(int target, const char& value) { PutChar(target, value); } template<> void Put<int>(int target, const int& value) { PutInt(target, value); } template<> void Put<unsigned int>(int target, const unsigned int& value) { PutInt(target, value); } template<> void Put<long long>(int target, const long long& value) { PutLL(target, value); } template<> void Put<unsigned long long>(int target, const unsigned long long& value) { PutLL(target, value); } // template<typename T> void Put(int target, typename enable_if<is_class<T>::value && !is_container<T>::value && !is_pair<T>::value, const T&>::type value){ // char data[sizeof(T)]; memcpy(data, &value, sizeof(T)); // REP(i, (int)sizeof(T)) PutChar(target, data[i]); // } template<typename T> void Put(int target, typename enable_if<is_pair<T>::value, const T&>::type pair) { Put<typename T::first_type>(target, pair.first); Put<typename T::second_type>(target, pair.second); } template<typename T> void Put(int target, typename enable_if<is_triple<T>::value, const T&>::type triple) { Put<typename tuple_element<0, T>::type>(target, get<0>(triple)); Put<typename tuple_element<1, T>::type>(target, get<1>(triple)); Put<typename tuple_element<2, T>::type>(target, get<2>(triple)); } const int MAX_MESSAGE_SIZE = 62000; const int PARTS = -1; template<typename T> void Put(int target, typename enable_if<is_container<T>::value, const T&>::type vec) { int data_size = vec.size() * sizeof(typename T::value_type); int parts = 1 + data_size / MAX_MESSAGE_SIZE; int part_size = (vec.size() + parts-1) / parts; Put<int>(target, parts); for (int p = 0; p < parts; ++p) { int start = p*part_size; int end = min((int)vec.size(), (p+1)*part_size); Put<int>(target, end-start); FOR(i, start, end) { Put<typename T::value_type>(target, vec[i]); } if (p < parts-1) { Send(target); } } } template<typename T> typename enable_if<!is_class<T>::value, T>::type Get(int source) { T::not_implemented; } template<typename T> typename enable_if<is_container<T>::value, T>::type Get(int source); template<> bool Get<bool>(int source) { return GetChar(source); } template<> char Get<char>(int source) { return GetChar(source); } template<> int Get<int>(int source) { return GetInt(source); } template<> unsigned int Get<unsigned int>(int source) { return GetInt(source); } template<> long long Get<long long>(int source) { return GetLL(source); } template<> unsigned long long Get<unsigned long long>(int source) { return GetLL(source); } // template<typename T> typename enable_if<is_class<T>::value && !is_container<T>::value && !is_pair<T>::value, T>::type Get(int source) { // char data[sizeof(T)]; REP(i, (int)sizeof(T)) data[i] = GetChar(source); // T value; memcpy(&value, data, sizeof(T)); // return value; // } template<typename T> typename enable_if<is_pair<T>::value, T>::type Get(int source) { auto f = Get<typename T::first_type>(source); auto s = Get<typename T::second_type>(source); return T(f, s); } template<typename T> typename enable_if<is_triple<T>::value, T>::type Get(int source) { auto f = Get<typename tuple_element<0, T>::type>(source); auto s = Get<typename tuple_element<1, T>::type>(source); auto t = Get<typename tuple_element<2, T>::type>(source); return T(f, s, t); } template<typename T> typename enable_if<is_container<T>::value, T>::type Get(int source) { int parts = GetInt(source); vector<typename T::value_type> result; REP(p, parts) { if (p > 0) Receive(source); int size = GetInt(source); REP(i,size) result.push_back(Get<typename T::value_type>(source)); } return T(result.begin(), result.end()); } template<typename T> void Broadcast(int source, T& value) { if (ME == source) REP(i,NODES) { Put<T>(i, value); Send(i); } Receive(source); value = Get<T>(source); } template<typename T> void BroadcastTree(int source, T& value) { int relative = (ME - source + NODES) % NODES; if (relative) { int from = (source + (relative-1) / 2) % NODES; Receive(from); value = Get<T>(from); } FOR(i,1,3) if (2*relative + i < NODES) { int to = ((source + 2*relative + i) % NODES); Put<T>(to, value); Send(to); } } template<typename T, typename Fn> void Accumulate(int target, const T& value, Fn fn) { Put<T>(target, value); Send(target); if (ME == target) REP(i, NODES) { Receive(i); fn(Get<T>(i)); } } /** ~5ms for adding ints */ template<typename T, typename Fn> T AccumulateTree(int target, T value, Fn fn) { int relative = (ME - target + NODES) % NODES; for (int b = 1; b < NODES; b <<= 1) { if (relative&b) { int to = (target + relative - b + NODES) % NODES; Put<T>(to, value); Send(to); break; } else if (relative + b < NODES) { int from = (target + relative + b) % NODES; Receive(from); value = fn(value, Get<T>(from)); } } return value; } template<typename T, typename Compute, typename Acc> T AccumulateValues(int target, Compute fn, Acc acc) { T result = fn(START); FOR(i,START+1,END) result = acc(result, fn(i)); return AccumulateTree(target, result, acc); } template<typename T, typename Compute> vector<T> AccumulateVector(int target, Compute fn) { vector<T> local; FOR(i,START, END) local.pb(fn(i)); vector<T> acc; Accumulate(target, local, [&](const vector<T>& vec) {acc.insert(acc.end(), vec.begin(), vec.end());}); return acc; } template<typename T> vector<T> Collect(int target, const T& value) { vector<T> acc; Accumulate(target, value, [&](const T& val) { acc.pb(val); }); return acc; } // ^^^ CUT HERE ^^^ /** * Intervals are left_bound-closed and right_bound-open: [L, R) */ template<typename Config> class bit { template<typename TConfig = Config> struct range_updates_config { template<class U> static char (&test(typename U::TRangeUpdate const*))[1]; template<class U> static char (&test(...))[2]; template<class U = TConfig> constexpr static typename U::TRangeUpdate _neutral(typename U::TRangeUpdate const*) { return U::neutral_range_update(); } template<class U = TConfig> constexpr static void* _neutral(...) { return 0; } static const bool enabled = (sizeof(test<TConfig>(0)) == 1); typedef decltype(_neutral<TConfig>(0)) Type; constexpr static Type neutral() { return _neutral<TConfig>(0); } }; typedef typename Config::TData TData; typedef typename range_updates_config<Config>::Type TRangeUpdate; typedef const function<bool(const TData&)>& Predicate; int size; /** Interval represented by the node */ vector<pair<int, int>> bounds; vector<TData> data; vector<TRangeUpdate> range_updates; bool __intersects(int L, int R, int idx) { return bounds[idx].first < R && L < bounds[idx].second; } bool __covers(int L, int R, int idx) { return L <= bounds[idx].first && bounds[idx].second <= R; } void __update_range_single(int idx, const TRangeUpdate& op) { Config::apply(op, data[idx], bounds[idx].first, bounds[idx].second); Config::compose_range_updates(op, range_updates[idx]); } template<class T = Config, typename enable_if<!range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) {} template<class T = Config, typename enable_if<range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) { if (idx < size) { __update_range_single(2*idx, range_updates[idx]); __update_range_single(2*idx + 1, range_updates[idx]); range_updates[idx] = Config::neutral_range_update(); } } void __update_range(int L, int R, const TRangeUpdate& op, int idx) { if (!__intersects(L, R, idx)) { return; } if (__covers(L, R, idx)) { __update_range_single(idx, op); return; } __push_range_update(idx); __update_range(L, R, op, 2*idx); __update_range(L, R, op, 2*idx+1); data[idx] = Config::merge(data[2*idx], data[2*idx+1]); } TData __query_range(int L, int R, int idx) { if (!__intersects(L, R, idx)) { return Config::neutral(); } if (__covers(L, R, idx)) { return data[idx]; } __push_range_update(idx); return Config::merge( __query_range(L, R, 2*idx), __query_range(L, R, 2*idx+1) ); } /** * If last=1, the last matching is returned. If last=0, the first one. */ int __find(int L, int R, Predicate fn, int idx, int last) { if (!__intersects(L, R, idx) || !fn(data[idx])) { return -1; } if (idx >= size) { return idx - size; } __push_range_update(idx); int preferred = __find(L, R, fn, 2*idx+last, last); if (preferred != -1) { return preferred; } return __find(L, R, fn, 2*idx+(last^1), last); } public: bit(int _size = 0) { size = 1; while (size < _size) { size <<= 1; } data = vector<TData>(2*size, Config::neutral()); range_updates = vector<TRangeUpdate>(2*size, range_updates_config<Config>::neutral()); bounds = vector<pair<int, int>>(2*size); for (int i = 0; i < size; ++i) { bounds[i+size] = {i, i+1}; } for (int i = size - 1; i >= 0; --i) { bounds[i] = {bounds[2*i].first, bounds[2*i+1].second}; } } void update_range(int L, int R, const TRangeUpdate& op) { __update_range(L, R, op, 1); } void update_single(int pos, const TRangeUpdate& op) { update_range(pos, pos+1, op); } TData query_range(int L, int R) { return __query_range(L, R, 1); } TData query_single(int pos) { return query_range(pos, pos+1); } void set(int pos, TData value) { int idx = size + pos; if (range_updates_config<Config>::enabled) { idx = 1; while (idx < size) { __push_range_update(idx); idx = 2*idx + (pos >= bounds[2*idx+1].first); } } // Push pending operations data[idx] = value; idx >>= 1; while (idx > 0) { data[idx] = Config::merge(data[2*idx], data[2*idx+1]); idx >>= 1; } } /** @returns -1 if no element found */ int first_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 0); } int first_which(Predicate contain_check) { return first_which(0, size, contain_check); } /** @returns -1 if no element found */ int last_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 1); } int last_which(Predicate contain_check) { return last_which(0, size, contain_check); } }; struct bit_config { typedef struct { LL sum_a; LL sum_b; int min_a; int min_b; LL sum_a_mul_b; } TData; static TData neutral() { return { (LL)0, (LL)0, (int)1e5, (int)1e5, (LL)0 }; } static TData merge(const TData& left, const TData& right) { return { left.sum_a + right.sum_a, left.sum_b + right.sum_b, min(left.min_a, right.min_a), min(left.min_b, right.min_b), left.sum_a_mul_b + right.sum_a_mul_b, }; } typedef struct { int a; int b; } TRangeUpdate; static void apply(const TRangeUpdate& op, TData& value, int A, int B) { value.sum_a = min(value.sum_a, op.a * (LL)(B-A)); value.sum_b = min(value.sum_b, op.b * (LL)(B-A)); value.min_a = min(value.min_a, op.a); value.min_b = min(value.min_b, op.b); value.sum_a_mul_b = min( min(value.sum_a_mul_b, (B-A) * (LL)op.a * (LL)op.b), min(value.sum_a * op.b, value.sum_b * op.a) ); } static void compose_range_updates(const TRangeUpdate& outer, TRangeUpdate& inner) { inner.a = min(inner.a, outer.a); inner.b = min(inner.b, outer.b); } static TRangeUpdate neutral_range_update() { return { (LL)1e5, (LL)1e5 }; } }; #include "dzialka.h" bool data[800][75000]; int taken_in_column[75000]; typedef pair<LL, vector<tuple<int, int, bool>>> PartialResult; int main() { // ios_base::sync_with_stdio(0); int H = GetFieldHeight(), W = GetFieldWidth(); reduce_nodes(H); FOR(i,START,END) { REP(j,W) data[i-START][j] = IsUsableCell(i, j); } int N = END-START; REP(j,W) taken_in_column[j] = 0; LL result = 0; REP(i,N) { vector<PII> taken = {{-1, N}}; int sum_taken = 0; REP(j,W) { if (!data[i][j]) taken_in_column[j] = i+1; while (taken.back().nd < taken_in_column[j]) { sum_taken -= (taken.back().st - taken[taken.size()-2].st) * taken.back().nd; taken.pop_back(); } sum_taken += (j - taken.back().st) * taken_in_column[j]; taken.pb({j, taken_in_column[j]}); result += (i+1) * (j + 1) - sum_taken; } } PartialResult res; res.first = result; REP(j,W) { int top = 0, bottom = 0; REP(i,N) { if (data[i][j]) { ++bottom; if (top == i) ++top; } else { bottom = 0; } } res.second.pb(make_tuple(top, bottom, top == N)); } //printf("%d %d\n", START, END); res = AccumulateTree(0, res, [&](PartialResult& top, const PartialResult& bottom) { LL result = top.st + bottom.st; bit<bit_config> BIT(W); REP(j,W) { int a = get<1>(top.nd[j]); int b = get<0>(bottom.nd[j]); BIT.set(j, {a, b, a, b, a*(LL)b}); int k = BIT.last_which(0, j, [&](const bit_config::TData& dt) { return dt.min_a <= a; }); BIT.update_range(k+1, j+1, {a, (int)1e5}); // printf("a=%d [%d, %d]\n",a, k+1, j); k = BIT.last_which(0, j, [&](const bit_config::TData& dt) { return dt.min_b <= b; }); BIT.update_range(k+1, j+1, {(int)1e5, b}); // printf("b=%d [%d, %d]\n",b, k+1, j); // REP(k,j+1) printf("%d %lld %lld\n", k, BIT.query_single(k).sum_a, BIT.query_single(k).sum_b); result += BIT.query_range(0, j+1).sum_a_mul_b; } top.st = result; REP(j,W) { get<0>(top.nd[j]) = get<2>(top.nd[j]) ? get<0>(top.nd[j]) + get<0>(bottom.nd[j]) : get<0>(top.nd[j]); get<1>(top.nd[j]) = get<2>(bottom.nd[j]) ? get<1>(bottom.nd[j]) + get<1>(top.nd[j]) : get<1>(bottom.nd[j]); get<2>(top.nd[j]) &= get<2>(bottom.nd[j]); } return top; }); if (ME == 0) { printf("%lld\n", res.st); } } |