#include <bits/stdc++.h> // #pragma GCC optimize ("O3") // #pragma GCC target ("sse4") using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> PII; #define REP(i,n) for(int i=0;i<(n);++i) #define FOR(i,a,b) for (int i=(a); i<(b); ++i) #define FORD(i,a,b) for (int i=(a)-1; i>=(b); --i) #define pb push_back #define mp make_pair #define st first #define nd second /** * Intervals are left_bound-closed and right_bound-open: [L, R) */ template<typename Config> class bit { template<typename TConfig = Config> struct range_updates_config { template<class U> static char (&test(typename U::TRangeUpdate const*))[1]; template<class U> static char (&test(...))[2]; template<class U = TConfig> constexpr static typename U::TRangeUpdate _neutral(typename U::TRangeUpdate const*) { return U::neutral_range_update(); } template<class U = TConfig> constexpr static void* _neutral(...) { return 0; } static const bool enabled = (sizeof(test<TConfig>(0)) == 1); typedef decltype(_neutral<TConfig>(0)) Type; constexpr static Type neutral() { return _neutral<TConfig>(0); } }; typedef typename Config::TData TData; typedef typename range_updates_config<Config>::Type TRangeUpdate; typedef const function<bool(const TData&)>& Predicate; int size; /** Interval represented by the node */ vector<pair<int, int>> bounds; vector<TData> data; vector<TRangeUpdate> range_updates; bool __intersects(int L, int R, int idx) { return bounds[idx].first < R && L < bounds[idx].second; } bool __covers(int L, int R, int idx) { return L <= bounds[idx].first && bounds[idx].second <= R; } void __update_range_single(int idx, const TRangeUpdate& op) { Config::apply(op, data[idx], bounds[idx].first, bounds[idx].second); Config::compose_range_updates(op, range_updates[idx]); } template<class T = Config, typename enable_if<!range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) {} template<class T = Config, typename enable_if<range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) { if (idx < size) { __update_range_single(2*idx, range_updates[idx]); __update_range_single(2*idx + 1, range_updates[idx]); range_updates[idx] = Config::neutral_range_update(); } } void __update_range(int L, int R, const TRangeUpdate& op, int idx) { if (!__intersects(L, R, idx)) { return; } if (__covers(L, R, idx)) { __update_range_single(idx, op); return; } __push_range_update(idx); __update_range(L, R, op, 2*idx); __update_range(L, R, op, 2*idx+1); data[idx] = Config::merge(data[2*idx], data[2*idx+1]); } TData __query_range(int L, int R, int idx) { if (!__intersects(L, R, idx)) { return Config::neutral(); } if (__covers(L, R, idx)) { return data[idx]; } __push_range_update(idx); return Config::merge( __query_range(L, R, 2*idx), __query_range(L, R, 2*idx+1) ); } /** * If last=1, the last matching is returned. If last=0, the first one. */ int __find(int L, int R, Predicate fn, int idx, int last) { if (!__intersects(L, R, idx) || !fn(data[idx])) { return -1; } if (idx >= size) { return idx - size; } __push_range_update(idx); int preferred = __find(L, R, fn, 2*idx+last, last); if (preferred != -1) { return preferred; } return __find(L, R, fn, 2*idx+(last^1), last); } public: bit(int _size = 0) { size = 1; while (size < _size) { size <<= 1; } data = vector<TData>(2*size, Config::neutral()); range_updates = vector<TRangeUpdate>(2*size, range_updates_config<Config>::neutral()); bounds = vector<pair<int, int>>(2*size); for (int i = 0; i < size; ++i) { bounds[i+size] = {i, i+1}; } for (int i = size - 1; i >= 0; --i) { bounds[i] = {bounds[2*i].first, bounds[2*i+1].second}; } } void update_range(int L, int R, const TRangeUpdate& op) { __update_range(L, R, op, 1); } void update_single(int pos, const TRangeUpdate& op) { update_range(pos, pos+1, op); } TData query_range(int L, int R) { return __query_range(L, R, 1); } TData query_single(int pos) { return query_range(pos, pos+1); } void set(int pos, TData value) { int idx = size + pos; if (range_updates_config<Config>::enabled) { idx = 1; while (idx < size) { __push_range_update(idx); idx = 2*idx + (pos >= bounds[2*idx+1].first); } } // Push pending operations data[idx] = value; idx >>= 1; while (idx > 0) { data[idx] = Config::merge(data[2*idx], data[2*idx+1]); idx >>= 1; } } /** @returns -1 if no element found */ int first_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 0); } int first_which(Predicate contain_check) { return first_which(0, size, contain_check); } /** @returns -1 if no element found */ int last_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 1); } int last_which(Predicate contain_check) { return last_which(0, size, contain_check); } }; const int MOD = 1000000007; const int NOT_FLIPPED = 0; const int FLIPPED = 1; typedef pair<LL, int> Result; const Result NO_RESULT = { -2e18, -1 }; #define dprintf(...) printf(__VA_ARGS__); fflush(stdout); struct Path { struct Data { Result best[2]; LL gain() { return (best[0].st + best[1].st) / 2; } LL path_cost() { return (best[1].st - best[0].st) / 2; } void set_gain(Result g) { LL p = path_cost(); best[NOT_FLIPPED] = { g.st - p, g.nd }; best[FLIPPED] = { g.st + p, g.nd }; } }; struct bit_config { typedef Data TData; static TData neutral() { return { {{(LL)-2e18, -1}, {(LL)-2e18, -1} } }; } static TData merge(const TData& left, const TData& right) { return Data { { max(left.best[NOT_FLIPPED], right.best[NOT_FLIPPED]), max(left.best[FLIPPED], right.best[FLIPPED]), } }; } typedef LL TRangeUpdate; static void apply(const TRangeUpdate& op, TData& value, int A, int B) { value.best[NOT_FLIPPED].st -= op; value.best[FLIPPED].st += op; } static void compose_range_updates(const TRangeUpdate& outer, TRangeUpdate& inner) { inner += outer; } static TRangeUpdate neutral_range_update() { return TRangeUpdate(); } }; int N; bit<bit_config>* data; vector<LL> edge_costs; Path(vector<Result> gains, vector<LL> _edge_costs) { N = gains.size(); edge_costs = _edge_costs; data = new bit<bit_config>(N); LL path_cost = 0; REP(i,N) { path_cost += edge_costs[i]; // dprintf("Path cost: %lld\n", path_cost); Data node_data = { { {gains[i].st - path_cost, gains[i].nd}, {gains[i].st + path_cost, gains[i].nd} } }; Data tmp = node_data; // // dprintf("??!!%lld %lld\n", tmp.best[0].st, tmp.best[1].st); // // dprintf("!!%lld %lld\n", gains[i], edge_costs[i]); data->set(i, node_data); } // // dprintf("DATA: "); REP(i,N) // // dprintf("(%lld %lld) ", data->query_single(i).best[0].st, data->query_single(i).best[1].st); // // dprintf("\n"); } Result get_best(int root, bool include_root = false) { LL path_to_root = root == -1 ? 0 : data->query_single(root).path_cost(); // // dprintf("ASKING FOR ROOT %d WITH PATH_COST %lld (%lld %lld)\n", root, root_data.path_cost(), root_data.best[0].st, root_data.best[1].st); Result result = { -2e18, -1}; Result above_root = data->query_range(0, root + include_root).best[FLIPPED]; above_root.st -= path_to_root; result = max(result, above_root); Result below_root = data->query_range(root+1, N).best[NOT_FLIPPED]; below_root.st += path_to_root; result = max(result, below_root); return result; }; void set_gain(int v, Result gain) { auto dt = data->query_single(v); // // dprintf("Before updating %d to have gain %lld: %lld %lld\n", v, gain, dt.best[0].st, dt.best[1].st); dt.set_gain(gain); // // dprintf("After updating %d to have gain %lld: %lld %lld\n", v, gain, dt.best[0].st, dt.best[1].st); data->set(v, dt); } void set_edge_cost(int v, LL cost) { // dprintf("Updating edge cost on position %d of %d\n", v, edge_costs.size()); LL previous_cost = edge_costs[v]; data->update_range(v, N, cost - previous_cost); edge_costs[v] = cost; } LL path_length(int v) { return data->query_single(v).path_cost(); } }; vector<pair<int, LL>> adj[100005]; int paths_num = 0; vector<int> path_nodes[100005]; PII path_parent[100005]; vector<int> child_paths[100005]; int parent[100005]; LL edge_to_parent[100005]; PII position_in_path[100005]; int dfs(int v, int p = -1) { parent[v] = p; vector<PII> child_paths_with_priority; int subtree_size = 1; for (auto uu: adj[v]) if (uu.st != p) { int child_size = dfs(uu.st, v); subtree_size += child_size; edge_to_parent[uu.st] = uu.nd; child_paths_with_priority.pb({position_in_path[uu.st].st, child_size}); } int main_path; if (child_paths_with_priority.empty()) { main_path = paths_num++; path_parent[main_path] = { -1, -1 }; } else { PII best_child_path = child_paths_with_priority[0]; for (auto p: child_paths_with_priority) if (p.nd > best_child_path.nd) { best_child_path = p; } main_path = best_child_path.st; for (auto p: child_paths_with_priority) if (p.st != main_path) { child_paths[main_path].pb(p.st); path_parent[p.st] = { main_path, path_nodes[main_path].size() }; } } position_in_path[v] = { main_path, path_nodes[main_path].size() }; path_nodes[main_path].pb(v); return subtree_size; } LL node_gain[100005]; Result path_results[100005]; set<Result> subpath_gains[100005]; inline Result best_subpath_gain(int v, int subpath_to_ignore) { if (subpath_gains[v].empty()) { return NO_RESULT; } auto it = subpath_gains[v].rbegin(); if (subpath_to_ignore > -1 && *it == path_results[subpath_to_ignore]) { ++it; } return it == subpath_gains[v].rend() ? NO_RESULT : *it; } inline Result full_gain(int v) { Result noderes = { node_gain[v], -v }; return max(noderes, best_subpath_gain(v, -1)); } int rev[100005]; Path* paths[100005]; void update_superpaths(int p) { // dprintf("Updating superpaths of %d...\n", p); while (true) { Result res = paths[p]->get_best(-1, false); Result previous_result = path_results[p]; if (res == previous_result) break; path_results[p] = res; // dprintf("Setting the result for path %d to %lld %d\n", p, res.st, res.nd); PII par = path_parent[p]; if (par.st == -1) break; subpath_gains[path_nodes[par.st][par.nd]].erase(previous_result); subpath_gains[path_nodes[par.st][par.nd]].insert(res); paths[par.st]->set_gain(par.nd, full_gain(path_nodes[par.st][par.nd])); p = par.st; } } void initialize_path(int p) { vector<int>& path = path_nodes[p]; for (int v: path_nodes[p]) { position_in_path[v].nd = path.size() - 1 - position_in_path[v].nd; } reverse(path.begin(), path.end()); for (int cp: child_paths[p]) { path_parent[cp].nd = path.size() - 1 - path_parent[cp].nd; initialize_path(cp); subpath_gains[path[path_parent[cp].nd]].insert(path_results[cp]); } vector<Result> gains; vector<LL> edges; for (int v: path) { gains.pb(full_gain(v)); edges.pb(edge_to_parent[v]); } paths[p] = new Path(gains, edges); path_results[p] = paths[p]->get_best(-1, false); // dprintf("Initial best for path %d: %lld %d\n", p, path_results[p].st, path_results[p].nd); } Result get_best(int v) { PII pos = position_in_path[v]; Result res = { -2e18, -1 }; int processed_path = -1; LL additional_distance = 0; while (true) { Path* pth = paths[pos.st]; auto path_best = pth->get_best(pos.nd, false); // dprintf("Best from path %d: %lld %d\n", pos.st, path_best.st, path_best.nd); path_best.st -= additional_distance; res = max(res, path_best); int v = path_nodes[pos.st][pos.nd]; if (processed_path > -1) { Result node_res = { node_gain[v], -v }; node_res.st -= additional_distance; res = max(res, node_res); } Result subpath_res = best_subpath_gain(v, processed_path); subpath_res.st -= additional_distance; res = max(res, subpath_res); additional_distance += pth->path_length(pos.nd); if (path_parent[pos.st].st == -1) break; processed_path = pos.st; pos = path_parent[pos.st]; } return res; } int main() { // ios_base::sync_with_stdio(0); int N, Q; scanf("%d%d", &N, &Q); FOR(i,1,N+1) scanf("%lld", &node_gain[i]); REP(i,N-1) { int a, b; LL c; scanf("%d%d%lld", &a, &b, &c); adj[a].pb({b, c}); adj[b].pb({a, c}); } int root = 1; dfs(root); initialize_path(position_in_path[root].st); // dprintf("PATHS\n"); REP(p, paths_num) { // dprintf("%d: ", p) for (int n: path_nodes[p]) { // dprintf("%d ", n); } // dprintf("(parent %d %d)\n", path_parent[p].st, path_parent[p].nd); } int current = 1; REP(q,Q) { int type; scanf("%d", &type); if (type == 1) { int v; LL d; scanf("%d%lld", &v, &d); node_gain[v] = d; PII pos = position_in_path[v]; paths[pos.st]->set_gain(pos.nd, full_gain(v)); update_superpaths(pos.st); } else { assert(type == 2); int a, b; LL d; scanf("%d%d%lld", &a, &b, &d); if (parent[b] == a) { swap(a, b); } PII pos = position_in_path[a]; // dprintf("Updating edge cost on path %d(%d)\n", pos.st, pos.nd); // dprintf("!!%d\n", paths[pos.st]); paths[pos.st]->set_edge_cost(pos.nd, d); update_superpaths(pos.st); } Result best = get_best(current); current = -best.nd; // printf("%d(%lld)\n", current, best.st); // fflush(stdout); printf("%d ", current); } printf("\n"); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | #include <bits/stdc++.h> // #pragma GCC optimize ("O3") // #pragma GCC target ("sse4") using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> PII; #define REP(i,n) for(int i=0;i<(n);++i) #define FOR(i,a,b) for (int i=(a); i<(b); ++i) #define FORD(i,a,b) for (int i=(a)-1; i>=(b); --i) #define pb push_back #define mp make_pair #define st first #define nd second /** * Intervals are left_bound-closed and right_bound-open: [L, R) */ template<typename Config> class bit { template<typename TConfig = Config> struct range_updates_config { template<class U> static char (&test(typename U::TRangeUpdate const*))[1]; template<class U> static char (&test(...))[2]; template<class U = TConfig> constexpr static typename U::TRangeUpdate _neutral(typename U::TRangeUpdate const*) { return U::neutral_range_update(); } template<class U = TConfig> constexpr static void* _neutral(...) { return 0; } static const bool enabled = (sizeof(test<TConfig>(0)) == 1); typedef decltype(_neutral<TConfig>(0)) Type; constexpr static Type neutral() { return _neutral<TConfig>(0); } }; typedef typename Config::TData TData; typedef typename range_updates_config<Config>::Type TRangeUpdate; typedef const function<bool(const TData&)>& Predicate; int size; /** Interval represented by the node */ vector<pair<int, int>> bounds; vector<TData> data; vector<TRangeUpdate> range_updates; bool __intersects(int L, int R, int idx) { return bounds[idx].first < R && L < bounds[idx].second; } bool __covers(int L, int R, int idx) { return L <= bounds[idx].first && bounds[idx].second <= R; } void __update_range_single(int idx, const TRangeUpdate& op) { Config::apply(op, data[idx], bounds[idx].first, bounds[idx].second); Config::compose_range_updates(op, range_updates[idx]); } template<class T = Config, typename enable_if<!range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) {} template<class T = Config, typename enable_if<range_updates_config<T>::enabled, int>::type = 0> void __push_range_update(int idx) { if (idx < size) { __update_range_single(2*idx, range_updates[idx]); __update_range_single(2*idx + 1, range_updates[idx]); range_updates[idx] = Config::neutral_range_update(); } } void __update_range(int L, int R, const TRangeUpdate& op, int idx) { if (!__intersects(L, R, idx)) { return; } if (__covers(L, R, idx)) { __update_range_single(idx, op); return; } __push_range_update(idx); __update_range(L, R, op, 2*idx); __update_range(L, R, op, 2*idx+1); data[idx] = Config::merge(data[2*idx], data[2*idx+1]); } TData __query_range(int L, int R, int idx) { if (!__intersects(L, R, idx)) { return Config::neutral(); } if (__covers(L, R, idx)) { return data[idx]; } __push_range_update(idx); return Config::merge( __query_range(L, R, 2*idx), __query_range(L, R, 2*idx+1) ); } /** * If last=1, the last matching is returned. If last=0, the first one. */ int __find(int L, int R, Predicate fn, int idx, int last) { if (!__intersects(L, R, idx) || !fn(data[idx])) { return -1; } if (idx >= size) { return idx - size; } __push_range_update(idx); int preferred = __find(L, R, fn, 2*idx+last, last); if (preferred != -1) { return preferred; } return __find(L, R, fn, 2*idx+(last^1), last); } public: bit(int _size = 0) { size = 1; while (size < _size) { size <<= 1; } data = vector<TData>(2*size, Config::neutral()); range_updates = vector<TRangeUpdate>(2*size, range_updates_config<Config>::neutral()); bounds = vector<pair<int, int>>(2*size); for (int i = 0; i < size; ++i) { bounds[i+size] = {i, i+1}; } for (int i = size - 1; i >= 0; --i) { bounds[i] = {bounds[2*i].first, bounds[2*i+1].second}; } } void update_range(int L, int R, const TRangeUpdate& op) { __update_range(L, R, op, 1); } void update_single(int pos, const TRangeUpdate& op) { update_range(pos, pos+1, op); } TData query_range(int L, int R) { return __query_range(L, R, 1); } TData query_single(int pos) { return query_range(pos, pos+1); } void set(int pos, TData value) { int idx = size + pos; if (range_updates_config<Config>::enabled) { idx = 1; while (idx < size) { __push_range_update(idx); idx = 2*idx + (pos >= bounds[2*idx+1].first); } } // Push pending operations data[idx] = value; idx >>= 1; while (idx > 0) { data[idx] = Config::merge(data[2*idx], data[2*idx+1]); idx >>= 1; } } /** @returns -1 if no element found */ int first_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 0); } int first_which(Predicate contain_check) { return first_which(0, size, contain_check); } /** @returns -1 if no element found */ int last_which(int L, int R, Predicate contain_check) { return __find(L, R, contain_check, 1, 1); } int last_which(Predicate contain_check) { return last_which(0, size, contain_check); } }; const int MOD = 1000000007; const int NOT_FLIPPED = 0; const int FLIPPED = 1; typedef pair<LL, int> Result; const Result NO_RESULT = { -2e18, -1 }; #define dprintf(...) printf(__VA_ARGS__); fflush(stdout); struct Path { struct Data { Result best[2]; LL gain() { return (best[0].st + best[1].st) / 2; } LL path_cost() { return (best[1].st - best[0].st) / 2; } void set_gain(Result g) { LL p = path_cost(); best[NOT_FLIPPED] = { g.st - p, g.nd }; best[FLIPPED] = { g.st + p, g.nd }; } }; struct bit_config { typedef Data TData; static TData neutral() { return { {{(LL)-2e18, -1}, {(LL)-2e18, -1} } }; } static TData merge(const TData& left, const TData& right) { return Data { { max(left.best[NOT_FLIPPED], right.best[NOT_FLIPPED]), max(left.best[FLIPPED], right.best[FLIPPED]), } }; } typedef LL TRangeUpdate; static void apply(const TRangeUpdate& op, TData& value, int A, int B) { value.best[NOT_FLIPPED].st -= op; value.best[FLIPPED].st += op; } static void compose_range_updates(const TRangeUpdate& outer, TRangeUpdate& inner) { inner += outer; } static TRangeUpdate neutral_range_update() { return TRangeUpdate(); } }; int N; bit<bit_config>* data; vector<LL> edge_costs; Path(vector<Result> gains, vector<LL> _edge_costs) { N = gains.size(); edge_costs = _edge_costs; data = new bit<bit_config>(N); LL path_cost = 0; REP(i,N) { path_cost += edge_costs[i]; // dprintf("Path cost: %lld\n", path_cost); Data node_data = { { {gains[i].st - path_cost, gains[i].nd}, {gains[i].st + path_cost, gains[i].nd} } }; Data tmp = node_data; // // dprintf("??!!%lld %lld\n", tmp.best[0].st, tmp.best[1].st); // // dprintf("!!%lld %lld\n", gains[i], edge_costs[i]); data->set(i, node_data); } // // dprintf("DATA: "); REP(i,N) // // dprintf("(%lld %lld) ", data->query_single(i).best[0].st, data->query_single(i).best[1].st); // // dprintf("\n"); } Result get_best(int root, bool include_root = false) { LL path_to_root = root == -1 ? 0 : data->query_single(root).path_cost(); // // dprintf("ASKING FOR ROOT %d WITH PATH_COST %lld (%lld %lld)\n", root, root_data.path_cost(), root_data.best[0].st, root_data.best[1].st); Result result = { -2e18, -1}; Result above_root = data->query_range(0, root + include_root).best[FLIPPED]; above_root.st -= path_to_root; result = max(result, above_root); Result below_root = data->query_range(root+1, N).best[NOT_FLIPPED]; below_root.st += path_to_root; result = max(result, below_root); return result; }; void set_gain(int v, Result gain) { auto dt = data->query_single(v); // // dprintf("Before updating %d to have gain %lld: %lld %lld\n", v, gain, dt.best[0].st, dt.best[1].st); dt.set_gain(gain); // // dprintf("After updating %d to have gain %lld: %lld %lld\n", v, gain, dt.best[0].st, dt.best[1].st); data->set(v, dt); } void set_edge_cost(int v, LL cost) { // dprintf("Updating edge cost on position %d of %d\n", v, edge_costs.size()); LL previous_cost = edge_costs[v]; data->update_range(v, N, cost - previous_cost); edge_costs[v] = cost; } LL path_length(int v) { return data->query_single(v).path_cost(); } }; vector<pair<int, LL>> adj[100005]; int paths_num = 0; vector<int> path_nodes[100005]; PII path_parent[100005]; vector<int> child_paths[100005]; int parent[100005]; LL edge_to_parent[100005]; PII position_in_path[100005]; int dfs(int v, int p = -1) { parent[v] = p; vector<PII> child_paths_with_priority; int subtree_size = 1; for (auto uu: adj[v]) if (uu.st != p) { int child_size = dfs(uu.st, v); subtree_size += child_size; edge_to_parent[uu.st] = uu.nd; child_paths_with_priority.pb({position_in_path[uu.st].st, child_size}); } int main_path; if (child_paths_with_priority.empty()) { main_path = paths_num++; path_parent[main_path] = { -1, -1 }; } else { PII best_child_path = child_paths_with_priority[0]; for (auto p: child_paths_with_priority) if (p.nd > best_child_path.nd) { best_child_path = p; } main_path = best_child_path.st; for (auto p: child_paths_with_priority) if (p.st != main_path) { child_paths[main_path].pb(p.st); path_parent[p.st] = { main_path, path_nodes[main_path].size() }; } } position_in_path[v] = { main_path, path_nodes[main_path].size() }; path_nodes[main_path].pb(v); return subtree_size; } LL node_gain[100005]; Result path_results[100005]; set<Result> subpath_gains[100005]; inline Result best_subpath_gain(int v, int subpath_to_ignore) { if (subpath_gains[v].empty()) { return NO_RESULT; } auto it = subpath_gains[v].rbegin(); if (subpath_to_ignore > -1 && *it == path_results[subpath_to_ignore]) { ++it; } return it == subpath_gains[v].rend() ? NO_RESULT : *it; } inline Result full_gain(int v) { Result noderes = { node_gain[v], -v }; return max(noderes, best_subpath_gain(v, -1)); } int rev[100005]; Path* paths[100005]; void update_superpaths(int p) { // dprintf("Updating superpaths of %d...\n", p); while (true) { Result res = paths[p]->get_best(-1, false); Result previous_result = path_results[p]; if (res == previous_result) break; path_results[p] = res; // dprintf("Setting the result for path %d to %lld %d\n", p, res.st, res.nd); PII par = path_parent[p]; if (par.st == -1) break; subpath_gains[path_nodes[par.st][par.nd]].erase(previous_result); subpath_gains[path_nodes[par.st][par.nd]].insert(res); paths[par.st]->set_gain(par.nd, full_gain(path_nodes[par.st][par.nd])); p = par.st; } } void initialize_path(int p) { vector<int>& path = path_nodes[p]; for (int v: path_nodes[p]) { position_in_path[v].nd = path.size() - 1 - position_in_path[v].nd; } reverse(path.begin(), path.end()); for (int cp: child_paths[p]) { path_parent[cp].nd = path.size() - 1 - path_parent[cp].nd; initialize_path(cp); subpath_gains[path[path_parent[cp].nd]].insert(path_results[cp]); } vector<Result> gains; vector<LL> edges; for (int v: path) { gains.pb(full_gain(v)); edges.pb(edge_to_parent[v]); } paths[p] = new Path(gains, edges); path_results[p] = paths[p]->get_best(-1, false); // dprintf("Initial best for path %d: %lld %d\n", p, path_results[p].st, path_results[p].nd); } Result get_best(int v) { PII pos = position_in_path[v]; Result res = { -2e18, -1 }; int processed_path = -1; LL additional_distance = 0; while (true) { Path* pth = paths[pos.st]; auto path_best = pth->get_best(pos.nd, false); // dprintf("Best from path %d: %lld %d\n", pos.st, path_best.st, path_best.nd); path_best.st -= additional_distance; res = max(res, path_best); int v = path_nodes[pos.st][pos.nd]; if (processed_path > -1) { Result node_res = { node_gain[v], -v }; node_res.st -= additional_distance; res = max(res, node_res); } Result subpath_res = best_subpath_gain(v, processed_path); subpath_res.st -= additional_distance; res = max(res, subpath_res); additional_distance += pth->path_length(pos.nd); if (path_parent[pos.st].st == -1) break; processed_path = pos.st; pos = path_parent[pos.st]; } return res; } int main() { // ios_base::sync_with_stdio(0); int N, Q; scanf("%d%d", &N, &Q); FOR(i,1,N+1) scanf("%lld", &node_gain[i]); REP(i,N-1) { int a, b; LL c; scanf("%d%d%lld", &a, &b, &c); adj[a].pb({b, c}); adj[b].pb({a, c}); } int root = 1; dfs(root); initialize_path(position_in_path[root].st); // dprintf("PATHS\n"); REP(p, paths_num) { // dprintf("%d: ", p) for (int n: path_nodes[p]) { // dprintf("%d ", n); } // dprintf("(parent %d %d)\n", path_parent[p].st, path_parent[p].nd); } int current = 1; REP(q,Q) { int type; scanf("%d", &type); if (type == 1) { int v; LL d; scanf("%d%lld", &v, &d); node_gain[v] = d; PII pos = position_in_path[v]; paths[pos.st]->set_gain(pos.nd, full_gain(v)); update_superpaths(pos.st); } else { assert(type == 2); int a, b; LL d; scanf("%d%d%lld", &a, &b, &d); if (parent[b] == a) { swap(a, b); } PII pos = position_in_path[a]; // dprintf("Updating edge cost on path %d(%d)\n", pos.st, pos.nd); // dprintf("!!%d\n", paths[pos.st]); paths[pos.st]->set_edge_cost(pos.nd, d); update_superpaths(pos.st); } Result best = get_best(current); current = -best.nd; // printf("%d(%lld)\n", current, best.st); // fflush(stdout); printf("%d ", current); } printf("\n"); } |