/* * Copyright (C) 2017 Paweł Widera * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details: * http://www.gnu.org/licenses/gpl.html */ #include <vector> #include <unordered_set> #include <iostream> using namespace std; int MOD = 1000000007; int n, k; vector<vector<int>> board; vector<vector<int>> cache; vector<pair<int, int>> neighbours = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; vector<unordered_set<pair<int, int>>> positions(5); // pair hasher (based on boost implementation) namespace std { template<typename S, typename T> struct hash<pair<S, T> > { inline size_t operator()(const pair<S, T>& p) const { hash<S> hasher1; hash<T> hasher2; size_t seed = 0; seed ^= hasher1(p.first) + 0x9e3779b9 + (seed << 6) + (seed >> 2); seed ^= hasher2(p.second) + 0x9e3779b9 + (seed << 6) + (seed >> 2); return seed; } }; } // check if tile has a neighbour with a given value bool is_next(int i, int j, int value) { for (auto move: neighbours) { if (value == board[i + move.first][j + move.second]) { return true; } } return false; } // mark a tile if it has a "value" tile next to it, return total number of marks int annotate(int value, int mark) { int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 0 && is_next(i, j, value)) { board[i][j] = mark; ++count; } } } return count; } // variant for k > 2, also stores coordinates of all 3s and 4s int annotate_and_store(int value, int mark) { for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 0 && is_next(i, j, value)) { board[i][j] = mark; positions[mark].insert(make_pair(i, j)); } } } return positions[mark].size(); } // count neighbours with a given value int count_next(int i, int j, int value) { int count = 0; for (auto move: neighbours) { if (value == board[i + move.first][j + move.second]) { ++count; } } return count; } // find number of ways to pick a "start" tiles and its "end" neighbour unsigned long long int count_neighbours(int start, int end) { unsigned long long int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == start) { count += count_next(i, j, end); } } } return count; } // variant for k > 2, only the "12" moves, building cache to be used by 3s and 4s unsigned long long int count_neighbours_cache() { unsigned long long int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 2) { int number = count_next(i, j, 1); count += number; cache[i][j] = number; } } } return count; } // variant for k > 2, uses cached values for speed up int count_next_cached(int i, int j, int value) { int count = 0; for (auto move: neighbours) { int rows = i + move.first; int columns = j + move.second; if (value == board[rows][columns]) { count += cache[rows][columns]; } } return count; } // variant for k > 2, looping over stored coordinates for speed up unsigned long long int count_neighbours_fast(int start, int end) { unsigned long long int count = 0; for (auto p: positions[start]) { int number = count_next_cached(p.first, p.second, end); count += number; cache[p.first][p.second] = number; } return count; } // how many "12" moves have "2" as a neighbour unsigned long long int count_122() { float count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 2) { int count22 = count_next(i, j, 2); for (auto move: neighbours) { int rows = i + move.first; int columns = j + move.second; if (1 == board[rows][columns]) { count += 0.5 * (count_next(rows, columns, 2) - 1) + count22; } } } } } return static_cast<unsigned long long int>(count); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> n >> k; board.reserve(n + 2); // set top and bottom guards board[0].resize(n + 2, 0); board[n + 1].resize(n + 2, 0); char symbol; for (int i = 1; i <= n; ++i) { board[i].reserve(n + 2); board[i].push_back(0); // set left side guard for (int j = 0; j < n; ++j) { cin >> symbol; board[i].push_back(symbol == '#' ? 9 : 0); } board[i].push_back(0); // set right side guard } // preprocessing vector<unsigned long long int> counter(k + 1, 0); for (int i = 1; i <= min(k, 2); ++i) { int value = i == 1 ? 9 : i - 1; counter[i] = annotate(value, i); } for (int i = 3; i <= k; ++i) { counter[i] = annotate_and_store(i - 1, i); } unsigned long long int count = counter[1]; // number of ways to choose k 1s for (int i = 2; i <= k; ++i) { count = count * (counter[1] - i + 1) / i; // % MOD; } if (k == 2) { // number of distinct "12" moves count = (count + count_neighbours(2, 1)) % MOD; } else { // init cache array (not needed for k < 3) cache.reserve(n + 2); for (int i = 1; i <= n; ++i) { cache[i].resize(n + 2, 0); } if (k == 3) { // number of distinct "1" + "12" moves count += (counter[1] - 1) * count_neighbours_cache() % MOD; // number of distinct "122" moves count = (count + count_122()) % MOD; // number of distinct "123" moves count = (count + count_neighbours_fast(3, 2)) % MOD; } else if (k == 4) { unsigned long long int count12 = count_neighbours_cache(); // number of distinct "12" + "12" moves count += count12 * count12 % MOD; // number of distinct "1" + "1" + "12" moves count += (counter[1] - 1) * (counter[1] - 2) % MOD * count12 % MOD; // number of distinct "1" + "122" moves count += (counter[1] - 1) * count_122() % MOD; // number of distinct "1" + "123" moves count += (counter[1] - 1) * count_neighbours_fast(3, 2) % MOD; // number of distinct "1234" moves count = (count + count_neighbours_fast(4, 3)) % MOD; } } cout << count << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* * Copyright (C) 2017 Paweł Widera * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details: * http://www.gnu.org/licenses/gpl.html */ #include <vector> #include <unordered_set> #include <iostream> using namespace std; int MOD = 1000000007; int n, k; vector<vector<int>> board; vector<vector<int>> cache; vector<pair<int, int>> neighbours = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; vector<unordered_set<pair<int, int>>> positions(5); // pair hasher (based on boost implementation) namespace std { template<typename S, typename T> struct hash<pair<S, T> > { inline size_t operator()(const pair<S, T>& p) const { hash<S> hasher1; hash<T> hasher2; size_t seed = 0; seed ^= hasher1(p.first) + 0x9e3779b9 + (seed << 6) + (seed >> 2); seed ^= hasher2(p.second) + 0x9e3779b9 + (seed << 6) + (seed >> 2); return seed; } }; } // check if tile has a neighbour with a given value bool is_next(int i, int j, int value) { for (auto move: neighbours) { if (value == board[i + move.first][j + move.second]) { return true; } } return false; } // mark a tile if it has a "value" tile next to it, return total number of marks int annotate(int value, int mark) { int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 0 && is_next(i, j, value)) { board[i][j] = mark; ++count; } } } return count; } // variant for k > 2, also stores coordinates of all 3s and 4s int annotate_and_store(int value, int mark) { for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 0 && is_next(i, j, value)) { board[i][j] = mark; positions[mark].insert(make_pair(i, j)); } } } return positions[mark].size(); } // count neighbours with a given value int count_next(int i, int j, int value) { int count = 0; for (auto move: neighbours) { if (value == board[i + move.first][j + move.second]) { ++count; } } return count; } // find number of ways to pick a "start" tiles and its "end" neighbour unsigned long long int count_neighbours(int start, int end) { unsigned long long int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == start) { count += count_next(i, j, end); } } } return count; } // variant for k > 2, only the "12" moves, building cache to be used by 3s and 4s unsigned long long int count_neighbours_cache() { unsigned long long int count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 2) { int number = count_next(i, j, 1); count += number; cache[i][j] = number; } } } return count; } // variant for k > 2, uses cached values for speed up int count_next_cached(int i, int j, int value) { int count = 0; for (auto move: neighbours) { int rows = i + move.first; int columns = j + move.second; if (value == board[rows][columns]) { count += cache[rows][columns]; } } return count; } // variant for k > 2, looping over stored coordinates for speed up unsigned long long int count_neighbours_fast(int start, int end) { unsigned long long int count = 0; for (auto p: positions[start]) { int number = count_next_cached(p.first, p.second, end); count += number; cache[p.first][p.second] = number; } return count; } // how many "12" moves have "2" as a neighbour unsigned long long int count_122() { float count = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (board[i][j] == 2) { int count22 = count_next(i, j, 2); for (auto move: neighbours) { int rows = i + move.first; int columns = j + move.second; if (1 == board[rows][columns]) { count += 0.5 * (count_next(rows, columns, 2) - 1) + count22; } } } } } return static_cast<unsigned long long int>(count); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> n >> k; board.reserve(n + 2); // set top and bottom guards board[0].resize(n + 2, 0); board[n + 1].resize(n + 2, 0); char symbol; for (int i = 1; i <= n; ++i) { board[i].reserve(n + 2); board[i].push_back(0); // set left side guard for (int j = 0; j < n; ++j) { cin >> symbol; board[i].push_back(symbol == '#' ? 9 : 0); } board[i].push_back(0); // set right side guard } // preprocessing vector<unsigned long long int> counter(k + 1, 0); for (int i = 1; i <= min(k, 2); ++i) { int value = i == 1 ? 9 : i - 1; counter[i] = annotate(value, i); } for (int i = 3; i <= k; ++i) { counter[i] = annotate_and_store(i - 1, i); } unsigned long long int count = counter[1]; // number of ways to choose k 1s for (int i = 2; i <= k; ++i) { count = count * (counter[1] - i + 1) / i; // % MOD; } if (k == 2) { // number of distinct "12" moves count = (count + count_neighbours(2, 1)) % MOD; } else { // init cache array (not needed for k < 3) cache.reserve(n + 2); for (int i = 1; i <= n; ++i) { cache[i].resize(n + 2, 0); } if (k == 3) { // number of distinct "1" + "12" moves count += (counter[1] - 1) * count_neighbours_cache() % MOD; // number of distinct "122" moves count = (count + count_122()) % MOD; // number of distinct "123" moves count = (count + count_neighbours_fast(3, 2)) % MOD; } else if (k == 4) { unsigned long long int count12 = count_neighbours_cache(); // number of distinct "12" + "12" moves count += count12 * count12 % MOD; // number of distinct "1" + "1" + "12" moves count += (counter[1] - 1) * (counter[1] - 2) % MOD * count12 % MOD; // number of distinct "1" + "122" moves count += (counter[1] - 1) * count_122() % MOD; // number of distinct "1" + "123" moves count += (counter[1] - 1) * count_neighbours_fast(3, 2) % MOD; // number of distinct "1234" moves count = (count + count_neighbours_fast(4, 3)) % MOD; } } cout << count << endl; return 0; } |