#include <cstdio> #include <vector> #include <limits> #include <unordered_map> #include <cassert> #include <iostream> const long long MIN_INCOME = std::numeric_limits<long long>::min() + (1LL<<40); const int MAX_Q = 100000; struct Edge { int to; long long cost = -1; int timestamp = -1; Edge() = default; Edge(int t, long long c) : to(t), cost(c) { } long long best_income = MIN_INCOME; int best_node = -1; }; struct Node { long long earnings; std::vector<Edge> edges; }; struct Graph { int n; std::vector<Node> nodes; // node_id, timestamp // if e.timestamp < q best_income is overestimated std::unordered_map<int, int> invalidated; Graph(int n_, int q) : n(n_), nodes(n) { invalidated.reserve(std::min(n, q)); invalidated.emplace(-1, MAX_Q); } void update_node(int node_id, long long earnings, int timestamp) { // std::cerr << "update_node " << node_id << " earnings " << nodes[node_id].earnings << " -> " << earnings << std::endl; if (nodes[node_id].earnings == earnings) return; bool growth = (nodes[node_id].earnings < earnings); nodes[node_id].earnings = earnings; if (growth) update(node_id, -1, timestamp, earnings, node_id); else invalidated.emplace(node_id, timestamp); } void update_edge(int from, int to, long long v, int timestamp) { // std::cerr << "update_edge " << from << "->" << to << " cost:" << v<< std::endl; for (Edge &e : nodes[from].edges) { if (e.to == to) { if (e.cost == v) return; bool growth = (e.cost > v); e.cost = v; if (e.best_node == -1) return; if (growth) { // update edge search(e.to, from, e, timestamp); // push new best_income up update(from, to, timestamp, e.best_income, e.best_node); } else invalidated.emplace(e.best_node, timestamp); return; } } } void add_edge(int from, int to, long long cost) { nodes[from].edges.emplace_back(to, cost); } // if !is_valid best_income is overestimated bool is_valid(Edge & e) { auto it = invalidated.find(e.best_node); if (it == invalidated.end() || it->second < e.timestamp) return true; return false; } Edge & rev_edge(int from, int to) { for (Edge & e : nodes[to].edges) if (e.to == from) return e; } // dfs push new (bigger) best_income up void update(int node_id, int from_node_id, int timestamp, long long best_income, int best_node) { //std::cerr << "update n:" << node_id << " f:" << from_node_id << " i:" << best_income << " n:" << best_node << std::endl; for (Edge & re : nodes[node_id].edges) // backward { if (re.to == from_node_id) continue; Edge & e = rev_edge(node_id, re.to); if (e.best_node == -1) // lazy, edge not explored yet continue; if ((e.best_income < best_income - e.cost) || (e.best_income == best_income - e.cost && e.best_node > best_node)) { e.best_income = best_income - e.cost; e.best_node = best_node; e.timestamp = timestamp; update(re.to, node_id, timestamp, e.best_income, e.best_node); } } } // dfs search, update edge best_income void search(int node_id, int from_node_id, Edge &e_from, int timestamp) { //std::cerr << "serach n:" << node_id << " f:" << e_from.to << " i:" << e_from.best_income << " n:" << e_from.best_node << std::endl; // stay in the city e_from.best_node = node_id; e_from.best_income = nodes[node_id].earnings - e_from.cost; for (Edge & e : nodes[node_id].edges) // backward { if (e.to == from_node_id) continue; if (e.best_node == -1) // now explore yet search(e.to, node_id, e, timestamp); if ((e_from.best_income < e.best_income - e_from.cost) || ((e_from.best_income == e.best_income - e_from.cost) && e_from.best_node > e.best_node)) { if (!is_valid(e)) // lazy update only if promising (!is_valid means overestimated) search(e.to, node_id, e, timestamp); if ((e_from.best_income < e.best_income - e_from.cost) || ((e_from.best_income == e.best_income - e_from.cost) && e_from.best_node > e.best_node)) { e_from.best_income = e.best_income - e_from.cost; e_from.best_node = e.best_node; } } } e_from.timestamp = timestamp; } Edge best_edge(int current_node_id, int timestamp) { //std::cerr << "next( " << current_node_id << " )" << std::endl; Edge best_edge; for (Edge & e : nodes[current_node_id].edges) // backward { if (!is_valid(e)) search(e.to, current_node_id, e, timestamp); if ((best_edge.best_income < e.best_income) || (best_edge.best_income == e.best_income && best_edge.best_node > e.best_node)) { best_edge = e; } } return best_edge; } void debug(int current_node_id) { std::cerr << "graph: current_node_id: " << current_node_id << std::endl; for (int i = 0; i < n; ++i) { std::cerr << "\t" << i << " e:" << nodes[i].earnings; for (Edge & e : nodes[i].edges) // backward { std::cerr << " (" << e.to << " c:" << e.cost << " n:" << e.best_node << " i:" << e.best_income << ")"; } std::cerr << std::endl; } std::cerr << std::endl; } }; int main() { int n, q; scanf("%d %d", &n, &q); Graph graph(n, q); for (auto && n : graph.nodes) scanf("%lld", &n.earnings); int a, b, c; long long v; for (int i = 0; i < n-1; ++i) { scanf("%d %d %lld", &a, &b, &v); --a; --b; graph.add_edge(a, b, v); graph.add_edge(b, a, v); } int current_node_id = 0; for (int i = 0; i < q; ++i) { scanf("%d", &c); if (c == 1) { scanf("%d %lld", &a, &v); --a; graph.update_node(a, v, q); } else { scanf("%d %d %lld", &a, &b, &v); --a; --b; graph.update_edge(a, b, v, q); graph.update_edge(b, a, v, q); } //graph.debug(current_node_id); int new_node_id = graph.best_edge(current_node_id, q).best_node; assert(new_node_id >= 0); assert(new_node_id != current_node_id); current_node_id = new_node_id; //graph.debug(current_node_id); if (i > 0) printf(" "); printf("%d", current_node_id + 1); //printf("\n"); } printf("\n"); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | #include <cstdio> #include <vector> #include <limits> #include <unordered_map> #include <cassert> #include <iostream> const long long MIN_INCOME = std::numeric_limits<long long>::min() + (1LL<<40); const int MAX_Q = 100000; struct Edge { int to; long long cost = -1; int timestamp = -1; Edge() = default; Edge(int t, long long c) : to(t), cost(c) { } long long best_income = MIN_INCOME; int best_node = -1; }; struct Node { long long earnings; std::vector<Edge> edges; }; struct Graph { int n; std::vector<Node> nodes; // node_id, timestamp // if e.timestamp < q best_income is overestimated std::unordered_map<int, int> invalidated; Graph(int n_, int q) : n(n_), nodes(n) { invalidated.reserve(std::min(n, q)); invalidated.emplace(-1, MAX_Q); } void update_node(int node_id, long long earnings, int timestamp) { // std::cerr << "update_node " << node_id << " earnings " << nodes[node_id].earnings << " -> " << earnings << std::endl; if (nodes[node_id].earnings == earnings) return; bool growth = (nodes[node_id].earnings < earnings); nodes[node_id].earnings = earnings; if (growth) update(node_id, -1, timestamp, earnings, node_id); else invalidated.emplace(node_id, timestamp); } void update_edge(int from, int to, long long v, int timestamp) { // std::cerr << "update_edge " << from << "->" << to << " cost:" << v<< std::endl; for (Edge &e : nodes[from].edges) { if (e.to == to) { if (e.cost == v) return; bool growth = (e.cost > v); e.cost = v; if (e.best_node == -1) return; if (growth) { // update edge search(e.to, from, e, timestamp); // push new best_income up update(from, to, timestamp, e.best_income, e.best_node); } else invalidated.emplace(e.best_node, timestamp); return; } } } void add_edge(int from, int to, long long cost) { nodes[from].edges.emplace_back(to, cost); } // if !is_valid best_income is overestimated bool is_valid(Edge & e) { auto it = invalidated.find(e.best_node); if (it == invalidated.end() || it->second < e.timestamp) return true; return false; } Edge & rev_edge(int from, int to) { for (Edge & e : nodes[to].edges) if (e.to == from) return e; } // dfs push new (bigger) best_income up void update(int node_id, int from_node_id, int timestamp, long long best_income, int best_node) { //std::cerr << "update n:" << node_id << " f:" << from_node_id << " i:" << best_income << " n:" << best_node << std::endl; for (Edge & re : nodes[node_id].edges) // backward { if (re.to == from_node_id) continue; Edge & e = rev_edge(node_id, re.to); if (e.best_node == -1) // lazy, edge not explored yet continue; if ((e.best_income < best_income - e.cost) || (e.best_income == best_income - e.cost && e.best_node > best_node)) { e.best_income = best_income - e.cost; e.best_node = best_node; e.timestamp = timestamp; update(re.to, node_id, timestamp, e.best_income, e.best_node); } } } // dfs search, update edge best_income void search(int node_id, int from_node_id, Edge &e_from, int timestamp) { //std::cerr << "serach n:" << node_id << " f:" << e_from.to << " i:" << e_from.best_income << " n:" << e_from.best_node << std::endl; // stay in the city e_from.best_node = node_id; e_from.best_income = nodes[node_id].earnings - e_from.cost; for (Edge & e : nodes[node_id].edges) // backward { if (e.to == from_node_id) continue; if (e.best_node == -1) // now explore yet search(e.to, node_id, e, timestamp); if ((e_from.best_income < e.best_income - e_from.cost) || ((e_from.best_income == e.best_income - e_from.cost) && e_from.best_node > e.best_node)) { if (!is_valid(e)) // lazy update only if promising (!is_valid means overestimated) search(e.to, node_id, e, timestamp); if ((e_from.best_income < e.best_income - e_from.cost) || ((e_from.best_income == e.best_income - e_from.cost) && e_from.best_node > e.best_node)) { e_from.best_income = e.best_income - e_from.cost; e_from.best_node = e.best_node; } } } e_from.timestamp = timestamp; } Edge best_edge(int current_node_id, int timestamp) { //std::cerr << "next( " << current_node_id << " )" << std::endl; Edge best_edge; for (Edge & e : nodes[current_node_id].edges) // backward { if (!is_valid(e)) search(e.to, current_node_id, e, timestamp); if ((best_edge.best_income < e.best_income) || (best_edge.best_income == e.best_income && best_edge.best_node > e.best_node)) { best_edge = e; } } return best_edge; } void debug(int current_node_id) { std::cerr << "graph: current_node_id: " << current_node_id << std::endl; for (int i = 0; i < n; ++i) { std::cerr << "\t" << i << " e:" << nodes[i].earnings; for (Edge & e : nodes[i].edges) // backward { std::cerr << " (" << e.to << " c:" << e.cost << " n:" << e.best_node << " i:" << e.best_income << ")"; } std::cerr << std::endl; } std::cerr << std::endl; } }; int main() { int n, q; scanf("%d %d", &n, &q); Graph graph(n, q); for (auto && n : graph.nodes) scanf("%lld", &n.earnings); int a, b, c; long long v; for (int i = 0; i < n-1; ++i) { scanf("%d %d %lld", &a, &b, &v); --a; --b; graph.add_edge(a, b, v); graph.add_edge(b, a, v); } int current_node_id = 0; for (int i = 0; i < q; ++i) { scanf("%d", &c); if (c == 1) { scanf("%d %lld", &a, &v); --a; graph.update_node(a, v, q); } else { scanf("%d %d %lld", &a, &b, &v); --a; --b; graph.update_edge(a, b, v, q); graph.update_edge(b, a, v, q); } //graph.debug(current_node_id); int new_node_id = graph.best_edge(current_node_id, q).best_node; assert(new_node_id >= 0); assert(new_node_id != current_node_id); current_node_id = new_node_id; //graph.debug(current_node_id); if (i > 0) printf(" "); printf("%d", current_node_id + 1); //printf("\n"); } printf("\n"); return 0; } |