#include <iostream> #include <vector> #include <algorithm> constexpr double eps = 1e-6; bool eps_eq(double lhs, double rhs) { return lhs + eps > rhs && rhs + eps > lhs; } bool eps_gt(double lhs, double rhs) { return lhs > rhs + eps; } bool eps_lt(double lhs, double rhs) { return lhs + eps < rhs; } bool eps_zero(double num) { return num > -eps && num < eps; } struct Tea { Tea(int vol, int temp) : vol_(vol), temp_(temp) {} double vol_; // volume double temp_; // temperature bool operator<(const Tea& rhs) { return eps_lt(this->temp_, rhs.temp_); } }; bool can_distribute_tea() { // TODO: Solve for n == 1 int n; std::cin >> n; std::vector<Tea> current, target; for (int i = 0; i < n; i++) { int vol, current_temp, target_temp; std::cin >> vol >> current_temp >> target_temp; current.emplace_back(vol, current_temp); target.emplace_back(vol, target_temp); } std::sort(current.begin(), current.end()); std::sort(target.begin(), target.end()); auto coldest = current.begin(); auto second_coldest = coldest + 1; for (const Tea& tea : target) { double vol = tea.vol_; double temp = tea.temp_; if (eps_gt(coldest->temp_, temp)) { return false; // Coldest tea is too hot } while (true) { while (second_coldest != current.end() && eps_eq(coldest->temp_, second_coldest->temp_)) { second_coldest->vol_ += coldest->vol_; coldest++; second_coldest++; } if (coldest + 1 == current.end()) { if (!eps_eq(temp, coldest->temp_)) { return false; } if (eps_gt(vol, coldest->vol_)) exit(1); // Shouldn't happen } if (eps_eq(coldest->temp_, temp)) { if (eps_lt(coldest->vol_, vol)) { return false; // We run out of cold tea } coldest->vol_ -= vol; if (eps_zero(coldest->vol_)) { coldest++; second_coldest++; } break; } // Tea mixing if (eps_lt(second_coldest->temp_, temp) || eps_eq(second_coldest->temp_, temp)) { // Hotter still too cold second_coldest->temp_ = (coldest->vol_ * coldest->temp_ + second_coldest->vol_ * second_coldest->temp_) / (coldest->vol_ + second_coldest->vol_); second_coldest->vol_ += coldest->vol_; coldest++; second_coldest++; } else { double hotter_vol = coldest->vol_ * (temp - coldest->temp_) / (second_coldest->temp_ - temp); hotter_vol = std::min(second_coldest->vol_, hotter_vol); coldest->temp_ = (coldest->vol_ * coldest->temp_ + hotter_vol * second_coldest->temp_) / (coldest->vol_ + hotter_vol); coldest->vol_ += hotter_vol; second_coldest->vol_ -= hotter_vol; if (eps_zero(second_coldest->vol_)) { second_coldest->vol_ = coldest->vol_; second_coldest->temp_ = coldest->temp_; coldest++; second_coldest++; } } } } return true; } int main() { std::ios_base::sync_with_stdio(false); int cases; std::cin >> cases; while (cases--) { std::cout << (can_distribute_tea() ? "TAK" : "NIE") << std::endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | #include <iostream> #include <vector> #include <algorithm> constexpr double eps = 1e-6; bool eps_eq(double lhs, double rhs) { return lhs + eps > rhs && rhs + eps > lhs; } bool eps_gt(double lhs, double rhs) { return lhs > rhs + eps; } bool eps_lt(double lhs, double rhs) { return lhs + eps < rhs; } bool eps_zero(double num) { return num > -eps && num < eps; } struct Tea { Tea(int vol, int temp) : vol_(vol), temp_(temp) {} double vol_; // volume double temp_; // temperature bool operator<(const Tea& rhs) { return eps_lt(this->temp_, rhs.temp_); } }; bool can_distribute_tea() { // TODO: Solve for n == 1 int n; std::cin >> n; std::vector<Tea> current, target; for (int i = 0; i < n; i++) { int vol, current_temp, target_temp; std::cin >> vol >> current_temp >> target_temp; current.emplace_back(vol, current_temp); target.emplace_back(vol, target_temp); } std::sort(current.begin(), current.end()); std::sort(target.begin(), target.end()); auto coldest = current.begin(); auto second_coldest = coldest + 1; for (const Tea& tea : target) { double vol = tea.vol_; double temp = tea.temp_; if (eps_gt(coldest->temp_, temp)) { return false; // Coldest tea is too hot } while (true) { while (second_coldest != current.end() && eps_eq(coldest->temp_, second_coldest->temp_)) { second_coldest->vol_ += coldest->vol_; coldest++; second_coldest++; } if (coldest + 1 == current.end()) { if (!eps_eq(temp, coldest->temp_)) { return false; } if (eps_gt(vol, coldest->vol_)) exit(1); // Shouldn't happen } if (eps_eq(coldest->temp_, temp)) { if (eps_lt(coldest->vol_, vol)) { return false; // We run out of cold tea } coldest->vol_ -= vol; if (eps_zero(coldest->vol_)) { coldest++; second_coldest++; } break; } // Tea mixing if (eps_lt(second_coldest->temp_, temp) || eps_eq(second_coldest->temp_, temp)) { // Hotter still too cold second_coldest->temp_ = (coldest->vol_ * coldest->temp_ + second_coldest->vol_ * second_coldest->temp_) / (coldest->vol_ + second_coldest->vol_); second_coldest->vol_ += coldest->vol_; coldest++; second_coldest++; } else { double hotter_vol = coldest->vol_ * (temp - coldest->temp_) / (second_coldest->temp_ - temp); hotter_vol = std::min(second_coldest->vol_, hotter_vol); coldest->temp_ = (coldest->vol_ * coldest->temp_ + hotter_vol * second_coldest->temp_) / (coldest->vol_ + hotter_vol); coldest->vol_ += hotter_vol; second_coldest->vol_ -= hotter_vol; if (eps_zero(second_coldest->vol_)) { second_coldest->vol_ = coldest->vol_; second_coldest->temp_ = coldest->temp_; coldest++; second_coldest++; } } } } return true; } int main() { std::ios_base::sync_with_stdio(false); int cases; std::cin >> cases; while (cases--) { std::cout << (can_distribute_tea() ? "TAK" : "NIE") << std::endl; } return 0; } |