1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#include <cstdint>
#include <cstdio>
#include <cstdlib>

#include <algorithm>
#include <numeric>
#include <vector>

using fenc_t = std::vector<int64_t>;

// #define SHOWDEBUG

static fenc_t read_fibonacci() {
  int n;
  (void)scanf("%d", &n);

  fenc_t ret;
  ret.reserve(n);

  for (int i = 0; i < n; i++) {
    int x;
    (void)scanf("%d", &x);
    ret.push_back(x);
  }

  return ret;
}

static void write_fibonacci(const fenc_t& f) {
  printf("%d", (int)f.size());
  for (auto x : f) {
    printf(" %d", (int)x);
  }
  putchar('\n');
}

static void cut_zeros(fenc_t& f) {
  while (f.size() > 0 && f.back() == 0) {
    f.pop_back();
  }
}

static void ensure_minimal(fenc_t& f) {
  while (f.size() < 4 || f.back() != 0) {
    f.push_back(0);
  }
}

static void sum_normalization_remove_twos(fenc_t& f) {
  ensure_minimal(f);

#ifdef SHOWDEBUG
  // write_fibonacci(f);
#endif

  int64_t combined = 0;
  for (int pos = (int)f.size() - 1; pos >= 0; pos--) {
    auto fix = [&](int64_t a, int64_t b, int64_t c, int64_t d) {
      if (d != 0) {
        f[pos - 1] += d;
      }
      f[pos + 0] = c;
      f[pos + 1] = b;
      f[pos + 2] = a;
    };
    combined = ((combined << 4) & 0xFFF) | f[pos];
    switch (combined) {
      case 0x020:
        if (pos > 0) {
          fix(1, 0, 0, 1);
        }
        break;
      case 0x030:
        if (pos > 0) {
          fix(1, 1, 0, 1);
        }
        break;
      case 0x021:
        fix(1, 1, 0, 0);
        break;
      case 0x012:
        fix(1, 0, 1, 0);
        break;
    }

    // write_fibonacci(f);
  }

  // Final cleanup
  if (f[1] == 3) {
    f[0] = 1;
    f[1] = 1;
    f[2] = 1;
  } else if (f[1] == 2) {
    if (f[2] == 0) {
      f[0] += 1;
      f[1] = 0;
      f[2] = 1;
    } else {
      f[0] = 0;
      f[1] = 1;
      f[2] = 0;
      f[3] = 1;
    }
  }
  if (f[0] == 3) {
    f[0] = 1;
    f[1] = 1;
  } else if (f[0] == 2) {
    if (f[1] == 0) {
      f[0] = 0;
      f[1] = 1;
    } else {
      f[0] = 1;
      f[1] = 0;
      f[2] = 1;
    }
  }

  // No 2's or 3's should be left
}

static void sum_normalization_remove_ones(fenc_t& f) {
  ensure_minimal(f);

  int i = 0;
  auto op = [&] {
    if (f[i] == 1 && f[i + 1] == 1 && f[i + 2] == 0) {
      f[i] = 0;
      f[i + 1] = 0;
      f[i + 2] = 1;
      return 2;
    } else {
      return 1;
    }
  };

  while (i + 3 <= (int)f.size()) {
    i += op();
  }

  i = f.size() - 3;
  while (i >= 0) {
    i -= op();
  }
}

// Makes a sequence resulting from piecewise addition of two fibonacci-encoded
// numbers into a real fibonacci-encoded number
static void normalize_after_addition(fenc_t& f) {
  // write_fibonacci(f);
  sum_normalization_remove_twos(f);
  // write_fibonacci(f);

  // write_fibonacci(f);
  sum_normalization_remove_ones(f);
}

static fenc_t add_two_fibs(fenc_t a, const fenc_t& b) {
  if (a.size() < b.size()) {
    a.resize(b.size(), 0);
  }

  for (size_t i = 0; i < b.size(); i++) {
    a[i] += b[i];
  }

  // The important, non-trivial part of addition
  normalize_after_addition(a);

  return a;
}

// Normalizes a totally-denormalized vector of ints
// O(n * log (max value in vector))
static fenc_t turbo_normalize(const fenc_t& f) {
  const uint64_t max_num = (uint64_t)*std::max_element(f.begin(), f.end());

  uint64_t layer_bit = 0;
  while ((max_num & layer_bit) != max_num) {
    layer_bit = (layer_bit << 1) | 1;
  }
  layer_bit = (layer_bit + 1) >> 1;

  fenc_t ret;
  fenc_t slice;

  while (layer_bit > 0) {
    slice.resize(f.size(), 0);
    for (size_t i = 0; i < f.size(); i++) {
      slice[i] = (f[i] & layer_bit) ? 1 : 0;
    }

    // There may be consecutive bits in this slice, so perform second
    // normalization step
    sum_normalization_remove_ones(slice);
#ifdef SHOWDEBUG
    printf("Adding ");
    write_fibonacci(slice);
#endif

    // Add ret to itself
    for (auto& x : ret) {
      x *= 2;
    }
    normalize_after_addition(ret);
#ifdef SHOWDEBUG
    printf("Normalized ");
    write_fibonacci(ret);
#endif

    // Now add slice to ret
    ret = add_two_fibs(std::move(ret), slice);
#ifdef SHOWDEBUG
    printf("Result ");
    write_fibonacci(ret);
#endif

    layer_bit >>= 1;
  }

  return ret;
}

static fenc_t multiply_meh(const fenc_t& a, const fenc_t& b) {
  std::vector<int64_t> events;
  fenc_t ret;
  events.resize(a.size() + b.size() + 1 + 4, 0);
  ret.resize(a.size() + b.size() + 1 + 4, 0);

  std::vector<size_t> ones_a, ones_b;
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] == 1) {
      ones_a.push_back(i);
    }
  }
  for (size_t i = 0; i < b.size(); i++) {
    if (b[i] == 1) {
      ones_b.push_back(i);
    }
  }

  // Prepare events
  for (const auto a_it : ones_a) {
    for (const auto b_it : ones_b) {
      auto a_pos = a_it;
      auto b_pos = b_it;
      if (a_pos > b_pos) {
        std::swap(a_pos, b_pos);
      }
#ifdef SHOWDEBUG
      printf("  (pair %d %d)\n", (int)a_pos, (int)b_pos);
#endif

      const size_t last = a_pos + b_pos;
      const size_t length = 4 * (a_pos / 2);
      if (a_pos % 2 == 1) {
        if (a_pos == b_pos) {
          if (a_pos > 0) {
            ret[0] += 1;
          }
        } else {
          ret[last - length - 3] += 1;
        }
      }

      events[last - length] += 1;
      events[last + 4] -= 1;

#ifdef SHOWDEBUG
      write_fibonacci(ret);
      write_fibonacci(events);
#endif
    }
  }

#ifdef SHOWDEBUG
  write_fibonacci(a);
  write_fibonacci(b);
#endif

  // Walk through events and complete `ret`
  int64_t counts[4] = {0, 0, 0, 0};
  for (size_t i = 0; i < events.size(); i++) {
    counts[i % 4] += events[i];
    ret[i] += counts[i % 4];
  }

#ifdef SHOWDEBUG
  write_fibonacci(ret);
#endif

  return turbo_normalize(std::move(ret));
}

void solve() {
  fenc_t a = read_fibonacci();
  fenc_t b = read_fibonacci();

  fenc_t ret = multiply_meh(a, b);
  cut_zeros(ret);
  write_fibonacci(ret);
}

int main() {
  int t;
  (void)scanf("%d", &t);

  while (t-- > 0) {
#ifdef SHOWDEBUG
    printf("--- --- ---\n");
#endif
    solve();
  }

  return 0;
}