/* Notice: - This account submits solutions that result from the collaboration of two (non-Polish) individuals. - We acknowledge that our participation is completely unofficial. - We just want to be able to submit our solutions until the end of the week. Thank you :)! */ #include <iostream> #include <vector> #include <cmath> #include <algorithm> using namespace std; typedef long long int64; namespace fft { // General Convolution classes. // DFT uses FFT over the field of complex numbers. // NTT uses FFT over the field of numbers modulo 2013265921. // How to use: // 1. Instantiate an object of class DFT or NTT. // convolution::DFT dft; // 2. Call the convolute method on two std::vectors a and b. // auto c = dft.convolute(a, b); // In the case of DFT, the types can be double, int or int64. // In the case of NTT, the types can be int, int64 or unsigned int. // DFT is faster and works on larger numbers, but may have precision issues. // NTT should only be used when the inputs and outputs fit in the range // [-10^9, 10^9] for int or int64, or [0, 2*10^9] for unsigned in. // The array sizes for NTT should be at most 2^26. typedef long long int64; class Complex { public: static constexpr double pi = acos(-1); double a, b; Complex(double a=0, double b=0) : a(a), b(b) {} Complex operator + (const Complex& other) const { return Complex(a + other.a, b + other.b); } Complex operator - (const Complex& other) const { return Complex(a - other.a, b - other.b); } Complex operator * (const Complex& other) const { return Complex(a * other.a - b * other.b, a * other.b + b * other.a); } Complex inverse() const { double len = a*a + b*b; return Complex(a / len, -b / len); } static Complex root(int lgsz, int kth=1) { return Complex(cos(2*pi*kth / (1<<lgsz)), sin(2*pi*kth / (1<<lgsz))); } }; ostream& operator << (ostream& out, const Complex& c) { out << c.a << " + " << c.b << "i"; return out; } void assign(double& d, const Complex& c) { d = c.a; } int64 myRound(const double& d) { return d + (d < 0 ? -0.5 : 0.5); } void assign(Complex& myC, const Complex& c) { myC = c; } void assign(int64& i, const Complex& c) { i = myRound(c.a); } void assign(int& i, const Complex& c) { i = myRound(c.a); } class Modular { public: static const int64 mod = 2013265921; static const int64 r = 137; static int64 lgpow(int64 x, int64 pw) { if (pw == 0) return 1; auto x2 = lgpow(x, pw>>1); if (pw&1) return x2*x2%mod*x%mod; return x2*x2%mod; } int64 x; Modular(int64 x=0) { if (x >= mod || x <= -mod) x %= mod; this->x = x; } Modular operator + (const Modular& other) const { int64 s = x + other.x; if (s >= mod) s -= mod; return Modular(s); } Modular operator - (const Modular& other) const { int64 d = x - other.x; if (d <= -mod) d += mod; return Modular(d); } Modular operator * (const Modular& other) const { return Modular(x * other.x % mod); } Modular inverse() { return Modular(lgpow(x, mod-2)); } static Modular root(int lgsz, int kth=1) { return Modular(lgpow(lgpow(r, 1<<(27-lgsz)), kth)); } }; ostream& operator << (ostream& out, const Modular& m) { out << m.x; return out; } void assign(int64& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; if (t >= (Modular::mod>>1)) i = -(Modular::mod - t); } void assign(int& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; if (t >= (Modular::mod>>1)) i = -(Modular::mod - t); } void assign(unsigned int& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; } template<typename C> class Convolution { int sz, lgsz; vector<C> roots, invRoots, lhs, rhs, res; vector<int> rev; static int nextPower2(int sz) { int i = 0; while ((1<<i) < sz) ++i; return i; } void precalc() { if (2*sz != roots.size()) { roots.resize(2*sz); invRoots.resize(2*sz); for (int j = (1<<lgsz); j < (1<<(lgsz+1)); ++j) { roots[j] = C::root(lgsz, j - (1<<lgsz)); invRoots[j] = roots[j].inverse(); } for (int j = (1<<lgsz) - 1; j >= 1; --j) { roots[j] = roots[j<<1]; invRoots[j] = invRoots[j<<1]; } } if (sz != rev.size()) { rev.resize(sz); rev[0] = 0; for (int i = 1; i < sz; ++i) { rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lgsz - 1)); } } } void prepInverse() { res.resize(sz); for (int i = 0; i < sz; ++i) { res[i] = lhs[i] * rhs[i]; } } void fft(vector<C>& c, bool invert) { for (int i = 0; i < sz; ++i) { if (i < rev[i]) swap(c[i], c[rev[i]]); } auto& r = (invert ? invRoots : roots); for (int halfStep = 1; halfStep < sz; halfStep <<= 1) { for (int start = 0; start < sz; start += (halfStep<<1)) { for (int i = 0; i < halfStep; ++i) { C w = r[i + (halfStep<<1)] * c[start + i + halfStep]; c[start + i + halfStep] = c[start + i] - w; c[start + i] = c[start + i] + w; } } } if (invert) { C mult = C(sz).inverse(); for (int i = 0; i < sz; ++i) { c[i] = c[i] * mult; } } } template<typename T> void toField(vector<C>& c, const vector<T>& a) { c.resize(sz); for (int i = 0; i < a.size(); ++i) c[i] = a[i]; for (int i = a.size(); i < sz; ++i) c[i] = 0; } template<typename T> void fromField(vector<T>& a, const vector<C>& c) { a.resize(sz); for (int i = 0; i < sz; ++i) { assign(a[i], c[i]); } } public: template<typename T> vector<T> convolute(const vector<T>& lhs, const vector<T>& rhs) { lgsz = 1 + nextPower2(max(lhs.size(), rhs.size())); sz = (1<<lgsz); precalc(); toField(this->lhs, lhs); toField(this->rhs, rhs); fft(this->lhs, false); fft(this->rhs, false); prepInverse(); fft(this->res, true); vector<T> res; fromField(res, this->res); return res; } }; typedef Convolution<Complex> DFT; typedef Convolution<Modular> NTT; }; void Read(vector<int64>& a) { int n; cin >> n; a.resize(n + 1); for (int i = 1; i <= n; ++i) { cin >> a[i]; } } void ShiftLeft(vector<int64>& a, int cnt) { if (a.size() == 0) return; for (int i = cnt; i < a.size(); ++i) { a[i - cnt] = a[i]; } a.resize(a.size() - cnt); } void Diff(vector<int64>& a, vector<int64>& b) { for (int i = 0; i < a.size() && i < b.size(); ++i) { a[i] -= b[i]; } } void Add(vector<int64>& a, vector<int64>& b) { a.resize(max(a.size(), b.size())); for (int i = 0; i < a.size() && i < b.size(); ++i) { a[i] += b[i]; } } void Print(vector<int64>& a) { cout << a.size() << "\n"; for (int i = 0; i < a.size(); ++i) { cout << a[i] << " "; } cout << endl; } void Propagate(vector<int64>& a) { for (int i = (int)a.size() - 3; i >= 0; --i) { a[i] -= a[i + 2]; } } void BlindParity(vector<int64>& a, int parity) { for (int i = parity; i < a.size(); i += 2) { a[i] = 0; } } void Adjust(fft::DFT& dft, vector<int64>& ans, vector<int64>& a, vector<int64>& b, int parity) { auto ainv = a; BlindParity(ainv, 1 - parity); reverse(ainv.begin(), ainv.end()); // k = j - i - 2/4. auto aux = dft.convolute(ainv, b); ShiftLeft(aux, a.size() - 1 + 2); // Print(aux); if (parity == 0) { Add(ans, aux); // ShiftLeft(aux, 2); // Diff(ans, aux); } else { Diff(ans, aux); // ShiftLeft(aux, 2); // Add(ans, aux); } } inline void Safety(vector<int64>& ans, int p) { if (p >= ans.size()) ans.resize(p + 1); } void ClearNegatives(vector<int64>& ans) { if (ans[0] < 0) { ans[1] += ans[0]; ans[0] = 0; } for (int i = 1; i < ans.size(); ++i) { if (ans[i] < 0) { Safety(ans, i + 1); ans[i - 1] -= ans[i]; ans[i + 1] += ans[i]; ans[i] = 0; } } } const int64 kInf = (1LL<<60); void ClearFoursAndGreater(vector<int64>& ans) { int64 maxv = kInf; Safety(ans, 2); while (maxv > 3) { ans[1] += ans[0]; ans[0] = 0; ans[2] += ans[1] / 2; ans[1] %= 2; maxv = 0; for (int i = 2; i < ans.size(); ++i) { maxv = max(maxv, ans[i]); if (ans[i] >= 3) { Safety(ans, i + 2); ans[i - 2] += ans[i] / 3; ans[i + 2] += ans[i] / 3; ans[i] %= 3; } } } } void Split(vector<int64>& ans, vector<vector<int64>>& desc) { desc.resize(6); for (int j = 0; j < 6; ++j) { desc[j].resize(ans.size()); } for (int i = 0; i < ans.size(); ++i) { for (int j = 0; j < ans[i]; ++j) { desc[(i&1) * 3 + j][i] += 1; } } } void ClearThrees(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 2; --i) { if (ans[i] >= 3) { Safety(ans, i + 2); ans[i - 2] += ans[i] / 3; ans[i + 2] += ans[i] / 3; ans[i] -= 3; for (int j = i + 2; j < ans.size(); j += 2) { if (ans[j] >= 3) { Safety(ans, j + 2); ans[j - 2] += ans[j] / 3; ans[j + 2] += ans[j] / 3; ans[j] -= 3; } else break; } } } } void ClearTwos(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 0; --i) { if (ans[i] == 2) { Safety(ans, i + 1); if (ans[i + 1] == 1) { ans[i + 2] += 1; ans[i + 1] = 0; ans[i] = 1; } else { if (i == 0) { ans[i + 1] += 1; ans[i] = 0; } else if (i == 1) { if (ans[i - 1] == 0) { ans[i + 1] += 1; ans[i - 1] += 1; ans[i] = 0; } } else if (ans[i - 1] == 0) { if (ans[i - 1] == 1) continue; if (ans[i - 2] == 0) { ans[i + 1] = 1; ans[i] = 0; ans[i - 2] = 1; } else if (ans[i - 2] == 1) { ans[i + 1] = 1; ans[i] = 0; ans[i - 2] = 2; } } } } } for (int i = ans.size() - 1; i >= 1; --i) { if (ans[i] == 2) { Safety(ans, i + 1); ans[i + 1] += 1; ans[i] = 1; ans[i - 1] = 0; } } } void ClearOnes(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 1; --i) { if (ans[i] == 1 && ans[i - 1] == 1) { Safety(ans, i + 1); ans[i + 1] = 1; ans[i] = 0; ans[i - 1] = 0; for (int j = i + 1; j + 1 < ans.size(); j += 2) { if (ans[j] == 1 && ans[j + 1] == 1) { ans[j] = 0; ans[j + 1] = 0; Safety(ans, j + 2); ans[j + 2] += 1; } } } } } void PrintFinal(vector<int64>& ans) { while (!ans.empty() && ans.back() == 0) ans.pop_back(); cout << ans.size() - 1 << " "; for (int i = 1; i < ans.size(); ++i) { cout << ans[i] << " "; } cout << "\n"; } void Solve() { vector<int64> a, b; Read(a); Read(b); fft::DFT dft; // k = i + j. auto ans = dft.convolute(a, b); Adjust(dft, ans, a, b, 0); Adjust(dft, ans, a, b, 1); Adjust(dft, ans, b, a, 0); Adjust(dft, ans, b, a, 1); Propagate(ans); Safety(ans, 5); ClearNegatives(ans); ClearFoursAndGreater(ans); vector<vector<int64>> desc; Split(ans, desc); ans.clear(); for (int i = 0; i < 6; ++i) { Add(ans, desc[i]); ClearTwos(ans); ClearOnes(ans); } PrintFinal(ans); } int main() { int test; cin >> test; for (;test; --test) { Solve(); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | /* Notice: - This account submits solutions that result from the collaboration of two (non-Polish) individuals. - We acknowledge that our participation is completely unofficial. - We just want to be able to submit our solutions until the end of the week. Thank you :)! */ #include <iostream> #include <vector> #include <cmath> #include <algorithm> using namespace std; typedef long long int64; namespace fft { // General Convolution classes. // DFT uses FFT over the field of complex numbers. // NTT uses FFT over the field of numbers modulo 2013265921. // How to use: // 1. Instantiate an object of class DFT or NTT. // convolution::DFT dft; // 2. Call the convolute method on two std::vectors a and b. // auto c = dft.convolute(a, b); // In the case of DFT, the types can be double, int or int64. // In the case of NTT, the types can be int, int64 or unsigned int. // DFT is faster and works on larger numbers, but may have precision issues. // NTT should only be used when the inputs and outputs fit in the range // [-10^9, 10^9] for int or int64, or [0, 2*10^9] for unsigned in. // The array sizes for NTT should be at most 2^26. typedef long long int64; class Complex { public: static constexpr double pi = acos(-1); double a, b; Complex(double a=0, double b=0) : a(a), b(b) {} Complex operator + (const Complex& other) const { return Complex(a + other.a, b + other.b); } Complex operator - (const Complex& other) const { return Complex(a - other.a, b - other.b); } Complex operator * (const Complex& other) const { return Complex(a * other.a - b * other.b, a * other.b + b * other.a); } Complex inverse() const { double len = a*a + b*b; return Complex(a / len, -b / len); } static Complex root(int lgsz, int kth=1) { return Complex(cos(2*pi*kth / (1<<lgsz)), sin(2*pi*kth / (1<<lgsz))); } }; ostream& operator << (ostream& out, const Complex& c) { out << c.a << " + " << c.b << "i"; return out; } void assign(double& d, const Complex& c) { d = c.a; } int64 myRound(const double& d) { return d + (d < 0 ? -0.5 : 0.5); } void assign(Complex& myC, const Complex& c) { myC = c; } void assign(int64& i, const Complex& c) { i = myRound(c.a); } void assign(int& i, const Complex& c) { i = myRound(c.a); } class Modular { public: static const int64 mod = 2013265921; static const int64 r = 137; static int64 lgpow(int64 x, int64 pw) { if (pw == 0) return 1; auto x2 = lgpow(x, pw>>1); if (pw&1) return x2*x2%mod*x%mod; return x2*x2%mod; } int64 x; Modular(int64 x=0) { if (x >= mod || x <= -mod) x %= mod; this->x = x; } Modular operator + (const Modular& other) const { int64 s = x + other.x; if (s >= mod) s -= mod; return Modular(s); } Modular operator - (const Modular& other) const { int64 d = x - other.x; if (d <= -mod) d += mod; return Modular(d); } Modular operator * (const Modular& other) const { return Modular(x * other.x % mod); } Modular inverse() { return Modular(lgpow(x, mod-2)); } static Modular root(int lgsz, int kth=1) { return Modular(lgpow(lgpow(r, 1<<(27-lgsz)), kth)); } }; ostream& operator << (ostream& out, const Modular& m) { out << m.x; return out; } void assign(int64& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; if (t >= (Modular::mod>>1)) i = -(Modular::mod - t); } void assign(int& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; if (t >= (Modular::mod>>1)) i = -(Modular::mod - t); } void assign(unsigned int& i, const Modular& m) { auto t = m.x; if (t < 0) t += Modular::mod; i = t; } template<typename C> class Convolution { int sz, lgsz; vector<C> roots, invRoots, lhs, rhs, res; vector<int> rev; static int nextPower2(int sz) { int i = 0; while ((1<<i) < sz) ++i; return i; } void precalc() { if (2*sz != roots.size()) { roots.resize(2*sz); invRoots.resize(2*sz); for (int j = (1<<lgsz); j < (1<<(lgsz+1)); ++j) { roots[j] = C::root(lgsz, j - (1<<lgsz)); invRoots[j] = roots[j].inverse(); } for (int j = (1<<lgsz) - 1; j >= 1; --j) { roots[j] = roots[j<<1]; invRoots[j] = invRoots[j<<1]; } } if (sz != rev.size()) { rev.resize(sz); rev[0] = 0; for (int i = 1; i < sz; ++i) { rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lgsz - 1)); } } } void prepInverse() { res.resize(sz); for (int i = 0; i < sz; ++i) { res[i] = lhs[i] * rhs[i]; } } void fft(vector<C>& c, bool invert) { for (int i = 0; i < sz; ++i) { if (i < rev[i]) swap(c[i], c[rev[i]]); } auto& r = (invert ? invRoots : roots); for (int halfStep = 1; halfStep < sz; halfStep <<= 1) { for (int start = 0; start < sz; start += (halfStep<<1)) { for (int i = 0; i < halfStep; ++i) { C w = r[i + (halfStep<<1)] * c[start + i + halfStep]; c[start + i + halfStep] = c[start + i] - w; c[start + i] = c[start + i] + w; } } } if (invert) { C mult = C(sz).inverse(); for (int i = 0; i < sz; ++i) { c[i] = c[i] * mult; } } } template<typename T> void toField(vector<C>& c, const vector<T>& a) { c.resize(sz); for (int i = 0; i < a.size(); ++i) c[i] = a[i]; for (int i = a.size(); i < sz; ++i) c[i] = 0; } template<typename T> void fromField(vector<T>& a, const vector<C>& c) { a.resize(sz); for (int i = 0; i < sz; ++i) { assign(a[i], c[i]); } } public: template<typename T> vector<T> convolute(const vector<T>& lhs, const vector<T>& rhs) { lgsz = 1 + nextPower2(max(lhs.size(), rhs.size())); sz = (1<<lgsz); precalc(); toField(this->lhs, lhs); toField(this->rhs, rhs); fft(this->lhs, false); fft(this->rhs, false); prepInverse(); fft(this->res, true); vector<T> res; fromField(res, this->res); return res; } }; typedef Convolution<Complex> DFT; typedef Convolution<Modular> NTT; }; void Read(vector<int64>& a) { int n; cin >> n; a.resize(n + 1); for (int i = 1; i <= n; ++i) { cin >> a[i]; } } void ShiftLeft(vector<int64>& a, int cnt) { if (a.size() == 0) return; for (int i = cnt; i < a.size(); ++i) { a[i - cnt] = a[i]; } a.resize(a.size() - cnt); } void Diff(vector<int64>& a, vector<int64>& b) { for (int i = 0; i < a.size() && i < b.size(); ++i) { a[i] -= b[i]; } } void Add(vector<int64>& a, vector<int64>& b) { a.resize(max(a.size(), b.size())); for (int i = 0; i < a.size() && i < b.size(); ++i) { a[i] += b[i]; } } void Print(vector<int64>& a) { cout << a.size() << "\n"; for (int i = 0; i < a.size(); ++i) { cout << a[i] << " "; } cout << endl; } void Propagate(vector<int64>& a) { for (int i = (int)a.size() - 3; i >= 0; --i) { a[i] -= a[i + 2]; } } void BlindParity(vector<int64>& a, int parity) { for (int i = parity; i < a.size(); i += 2) { a[i] = 0; } } void Adjust(fft::DFT& dft, vector<int64>& ans, vector<int64>& a, vector<int64>& b, int parity) { auto ainv = a; BlindParity(ainv, 1 - parity); reverse(ainv.begin(), ainv.end()); // k = j - i - 2/4. auto aux = dft.convolute(ainv, b); ShiftLeft(aux, a.size() - 1 + 2); // Print(aux); if (parity == 0) { Add(ans, aux); // ShiftLeft(aux, 2); // Diff(ans, aux); } else { Diff(ans, aux); // ShiftLeft(aux, 2); // Add(ans, aux); } } inline void Safety(vector<int64>& ans, int p) { if (p >= ans.size()) ans.resize(p + 1); } void ClearNegatives(vector<int64>& ans) { if (ans[0] < 0) { ans[1] += ans[0]; ans[0] = 0; } for (int i = 1; i < ans.size(); ++i) { if (ans[i] < 0) { Safety(ans, i + 1); ans[i - 1] -= ans[i]; ans[i + 1] += ans[i]; ans[i] = 0; } } } const int64 kInf = (1LL<<60); void ClearFoursAndGreater(vector<int64>& ans) { int64 maxv = kInf; Safety(ans, 2); while (maxv > 3) { ans[1] += ans[0]; ans[0] = 0; ans[2] += ans[1] / 2; ans[1] %= 2; maxv = 0; for (int i = 2; i < ans.size(); ++i) { maxv = max(maxv, ans[i]); if (ans[i] >= 3) { Safety(ans, i + 2); ans[i - 2] += ans[i] / 3; ans[i + 2] += ans[i] / 3; ans[i] %= 3; } } } } void Split(vector<int64>& ans, vector<vector<int64>>& desc) { desc.resize(6); for (int j = 0; j < 6; ++j) { desc[j].resize(ans.size()); } for (int i = 0; i < ans.size(); ++i) { for (int j = 0; j < ans[i]; ++j) { desc[(i&1) * 3 + j][i] += 1; } } } void ClearThrees(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 2; --i) { if (ans[i] >= 3) { Safety(ans, i + 2); ans[i - 2] += ans[i] / 3; ans[i + 2] += ans[i] / 3; ans[i] -= 3; for (int j = i + 2; j < ans.size(); j += 2) { if (ans[j] >= 3) { Safety(ans, j + 2); ans[j - 2] += ans[j] / 3; ans[j + 2] += ans[j] / 3; ans[j] -= 3; } else break; } } } } void ClearTwos(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 0; --i) { if (ans[i] == 2) { Safety(ans, i + 1); if (ans[i + 1] == 1) { ans[i + 2] += 1; ans[i + 1] = 0; ans[i] = 1; } else { if (i == 0) { ans[i + 1] += 1; ans[i] = 0; } else if (i == 1) { if (ans[i - 1] == 0) { ans[i + 1] += 1; ans[i - 1] += 1; ans[i] = 0; } } else if (ans[i - 1] == 0) { if (ans[i - 1] == 1) continue; if (ans[i - 2] == 0) { ans[i + 1] = 1; ans[i] = 0; ans[i - 2] = 1; } else if (ans[i - 2] == 1) { ans[i + 1] = 1; ans[i] = 0; ans[i - 2] = 2; } } } } } for (int i = ans.size() - 1; i >= 1; --i) { if (ans[i] == 2) { Safety(ans, i + 1); ans[i + 1] += 1; ans[i] = 1; ans[i - 1] = 0; } } } void ClearOnes(vector<int64>& ans) { for (int i = ans.size() - 1; i >= 1; --i) { if (ans[i] == 1 && ans[i - 1] == 1) { Safety(ans, i + 1); ans[i + 1] = 1; ans[i] = 0; ans[i - 1] = 0; for (int j = i + 1; j + 1 < ans.size(); j += 2) { if (ans[j] == 1 && ans[j + 1] == 1) { ans[j] = 0; ans[j + 1] = 0; Safety(ans, j + 2); ans[j + 2] += 1; } } } } } void PrintFinal(vector<int64>& ans) { while (!ans.empty() && ans.back() == 0) ans.pop_back(); cout << ans.size() - 1 << " "; for (int i = 1; i < ans.size(); ++i) { cout << ans[i] << " "; } cout << "\n"; } void Solve() { vector<int64> a, b; Read(a); Read(b); fft::DFT dft; // k = i + j. auto ans = dft.convolute(a, b); Adjust(dft, ans, a, b, 0); Adjust(dft, ans, a, b, 1); Adjust(dft, ans, b, a, 0); Adjust(dft, ans, b, a, 1); Propagate(ans); Safety(ans, 5); ClearNegatives(ans); ClearFoursAndGreater(ans); vector<vector<int64>> desc; Split(ans, desc); ans.clear(); for (int i = 0; i < 6; ++i) { Add(ans, desc[i]); ClearTwos(ans); ClearOnes(ans); } PrintFinal(ans); } int main() { int test; cin >> test; for (;test; --test) { Solve(); } } |