#include <iostream> using namespace std; // data structure that represents a node in the tree struct Node { int data, suma; // holds the key Node *parent; // pointer to the parent Node *left; // pointer to left child Node *right; // pointer to right child int color; // 1 -> Red, 0 -> Black }; typedef Node *NodePtr; // class RBTree implements the operations in Red Black Tree class RBTree { private: NodePtr root; NodePtr TNULL; // initializes the nodes with appropirate values // all the pointers are set to point to the null pointer void initializeNULLNode(NodePtr node, NodePtr parent) { node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; } void preOrderHelper(NodePtr node) { if (node != TNULL) { cout<<node->data<<" "; preOrderHelper(node->left); preOrderHelper(node->right); } } void inOrderHelper(NodePtr node) { if (node != TNULL) { inOrderHelper(node->left); cout<<node->data<<" "; inOrderHelper(node->right); } } void postOrderHelper(NodePtr node) { if (node != TNULL) { postOrderHelper(node->left); postOrderHelper(node->right); cout<<node->data<<" "; } } NodePtr searchTreeHelper(NodePtr node, int key) { if (node == TNULL || key == node->data) { return node; } if (key < node->data) { return searchTreeHelper(node->left, key); } return searchTreeHelper(node->right, key); } // fix the rb tree modified by the delete operation void fixDelete(NodePtr x) { NodePtr s; while (x != root && x->color == 0) { if (x == x->parent->left) { s = x->parent->right; if (s->color == 1) { // case 3.1 s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; } if (s->left->color == 0 && s->right->color == 0) { // case 3.2 s->color = 1; x = x->parent; } else { if (s->right->color == 0) { // case 3.3 s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; } // case 3.4 s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; } } else { s = x->parent->left; if (s->color == 1) { // case 3.1 s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; } if (s->right->color == 0 && s->right->color == 0) { // case 3.2 s->color = 1; x = x->parent; } else { if (s->left->color == 0) { // case 3.3 s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; } // case 3.4 s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; } } } x->color = 0; } void rbTransplant(NodePtr u, NodePtr v){ if (u->parent == nullptr) { root = v; } else if (u == u->parent->left){ u->parent->left = v; } else { u->parent->right = v; } v->parent = u->parent; } void deleteNodeHelper(NodePtr node, int key) { // find the node containing key NodePtr z = TNULL; NodePtr x, y; while (node != TNULL){ if (node->data == key) { z = node; } if (node->data <= key) { node = node->right; } else { node = node->left; } } if (z == TNULL) { cout<<"Couldn't find key in the tree"<<endl; return; } y = z; int y_original_color = y->color; if (z->left == TNULL) { x = z->right; rbTransplant(z, z->right); } else if (z->right == TNULL) { x = z->left; rbTransplant(z, z->left); } else { y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) { x->parent = y; } else { rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; } rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; } delete z; if (y_original_color == 0){ fixDelete(x); } } // fix the red-black tree void fixInsert(NodePtr k){ NodePtr u; while (k->parent->color == 1) { if (k->parent == k->parent->parent->right) { u = k->parent->parent->left; // uncle if (u->color == 1) { // case 3.1 u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->left) { // case 3.2.2 k = k->parent; rightRotate(k); } // case 3.2.1 k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); } } else { u = k->parent->parent->right; // uncle if (u->color == 1) { // mirror case 3.1 u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->right) { // mirror case 3.2.2 k = k->parent; leftRotate(k); } // mirror case 3.2.1 k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); } } if (k == root) { break; } } root->color = 0; } void printHelper(NodePtr root, string indent, bool last) { // print the tree structure on the screen if (root != TNULL) { cout<<indent; if (last) { cout<<"R----"; indent += " "; } else { cout<<"L----"; indent += "| "; } string sColor = root->color?"RED":"BLACK"; cout<<root->data<<"("<<sColor<<")"<<endl; printHelper(root->left, indent, false); printHelper(root->right, indent, true); } // cout<<root->left->data<<endl; } public: RBTree() { TNULL = new Node; TNULL->color = 0; TNULL->suma=0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; } // Pre-Order traversal // Node->Left Subtree->Right Subtree void preorder() { preOrderHelper(this->root); } // In-Order traversal // Left Subtree -> Node -> Right Subtree void inorder() { inOrderHelper(this->root); } // Post-Order traversal // Left Subtree -> Right Subtree -> Node void postorder() { postOrderHelper(this->root); } // search the tree for the key k // and return the corresponding node NodePtr searchTree(int k) { return searchTreeHelper(this->root, k); } // find the node with the minimum key NodePtr minimum(NodePtr node) { while (node->left != TNULL) { node = node->left; } return node; } // find the node with the maximum key NodePtr maximum(NodePtr node) { while (node->right != TNULL) { node = node->right; } return node; } // find the successor of a given node NodePtr successor(NodePtr x) { // if the right subtree is not null, // the successor is the leftmost node in the // right subtree if (x->right != TNULL) { return minimum(x->right); } // else it is the lowest ancestor of x whose // left child is also an ancestor of x. NodePtr y = x->parent; while (y != TNULL && x == y->right) { x = y; y = y->parent; } return y; } // find the predecessor of a given node NodePtr predecessor(NodePtr x) { // if the left subtree is not null, // the predecessor is the rightmost node in the // left subtree if (x->left != TNULL) { return maximum(x->left); } NodePtr y = x->parent; while (y != TNULL && x == y->left) { x = y; y = y->parent; } return y; } // rotate left at node x void leftRotate(NodePtr x) { NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } // rotate right at node x void rightRotate(NodePtr x) { NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->right) { x->parent->right = y; } else { x->parent->left = y; } y->right = x; x->parent = y; } // insert the key to the tree in its appropriate position // and fix the tree void insert(int key) { // Ordinary Binary Search Insertion NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; // new node must be red NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) { y = x; if (node->data < x->data) { x = x->left; } else { x = x->right; } } // y is parent of x node->parent = y; if (y == nullptr) { root = node; } else if (node->data < y->data) { y->left = node; } else { y->right = node; } // if new node is a root node, simply return if (node->parent == nullptr){ node->color = 0; return; } // if the grandparent is null, simply return if (node->parent->parent == nullptr) { return; } // Fix the tree fixInsert(node); } NodePtr getRoot(){ return this->root; } // delete the node from the tree void deleteNode(int data) { deleteNodeHelper(this->root, data); } // print the tree structure on the screen void prettyPrint() { if (root) { printHelper(this->root, "", true); } } }; int main() { RBTree bst; bst.insert(8); bst.insert(18); bst.insert(5); bst.insert(15); bst.insert(17); bst.insert(25); bst.insert(40); bst.insert(80); bst.deleteNode(25); bst.prettyPrint(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | #include <iostream> using namespace std; // data structure that represents a node in the tree struct Node { int data, suma; // holds the key Node *parent; // pointer to the parent Node *left; // pointer to left child Node *right; // pointer to right child int color; // 1 -> Red, 0 -> Black }; typedef Node *NodePtr; // class RBTree implements the operations in Red Black Tree class RBTree { private: NodePtr root; NodePtr TNULL; // initializes the nodes with appropirate values // all the pointers are set to point to the null pointer void initializeNULLNode(NodePtr node, NodePtr parent) { node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; } void preOrderHelper(NodePtr node) { if (node != TNULL) { cout<<node->data<<" "; preOrderHelper(node->left); preOrderHelper(node->right); } } void inOrderHelper(NodePtr node) { if (node != TNULL) { inOrderHelper(node->left); cout<<node->data<<" "; inOrderHelper(node->right); } } void postOrderHelper(NodePtr node) { if (node != TNULL) { postOrderHelper(node->left); postOrderHelper(node->right); cout<<node->data<<" "; } } NodePtr searchTreeHelper(NodePtr node, int key) { if (node == TNULL || key == node->data) { return node; } if (key < node->data) { return searchTreeHelper(node->left, key); } return searchTreeHelper(node->right, key); } // fix the rb tree modified by the delete operation void fixDelete(NodePtr x) { NodePtr s; while (x != root && x->color == 0) { if (x == x->parent->left) { s = x->parent->right; if (s->color == 1) { // case 3.1 s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; } if (s->left->color == 0 && s->right->color == 0) { // case 3.2 s->color = 1; x = x->parent; } else { if (s->right->color == 0) { // case 3.3 s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; } // case 3.4 s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; } } else { s = x->parent->left; if (s->color == 1) { // case 3.1 s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; } if (s->right->color == 0 && s->right->color == 0) { // case 3.2 s->color = 1; x = x->parent; } else { if (s->left->color == 0) { // case 3.3 s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; } // case 3.4 s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; } } } x->color = 0; } void rbTransplant(NodePtr u, NodePtr v){ if (u->parent == nullptr) { root = v; } else if (u == u->parent->left){ u->parent->left = v; } else { u->parent->right = v; } v->parent = u->parent; } void deleteNodeHelper(NodePtr node, int key) { // find the node containing key NodePtr z = TNULL; NodePtr x, y; while (node != TNULL){ if (node->data == key) { z = node; } if (node->data <= key) { node = node->right; } else { node = node->left; } } if (z == TNULL) { cout<<"Couldn't find key in the tree"<<endl; return; } y = z; int y_original_color = y->color; if (z->left == TNULL) { x = z->right; rbTransplant(z, z->right); } else if (z->right == TNULL) { x = z->left; rbTransplant(z, z->left); } else { y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) { x->parent = y; } else { rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; } rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; } delete z; if (y_original_color == 0){ fixDelete(x); } } // fix the red-black tree void fixInsert(NodePtr k){ NodePtr u; while (k->parent->color == 1) { if (k->parent == k->parent->parent->right) { u = k->parent->parent->left; // uncle if (u->color == 1) { // case 3.1 u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->left) { // case 3.2.2 k = k->parent; rightRotate(k); } // case 3.2.1 k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); } } else { u = k->parent->parent->right; // uncle if (u->color == 1) { // mirror case 3.1 u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; } else { if (k == k->parent->right) { // mirror case 3.2.2 k = k->parent; leftRotate(k); } // mirror case 3.2.1 k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); } } if (k == root) { break; } } root->color = 0; } void printHelper(NodePtr root, string indent, bool last) { // print the tree structure on the screen if (root != TNULL) { cout<<indent; if (last) { cout<<"R----"; indent += " "; } else { cout<<"L----"; indent += "| "; } string sColor = root->color?"RED":"BLACK"; cout<<root->data<<"("<<sColor<<")"<<endl; printHelper(root->left, indent, false); printHelper(root->right, indent, true); } // cout<<root->left->data<<endl; } public: RBTree() { TNULL = new Node; TNULL->color = 0; TNULL->suma=0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; } // Pre-Order traversal // Node->Left Subtree->Right Subtree void preorder() { preOrderHelper(this->root); } // In-Order traversal // Left Subtree -> Node -> Right Subtree void inorder() { inOrderHelper(this->root); } // Post-Order traversal // Left Subtree -> Right Subtree -> Node void postorder() { postOrderHelper(this->root); } // search the tree for the key k // and return the corresponding node NodePtr searchTree(int k) { return searchTreeHelper(this->root, k); } // find the node with the minimum key NodePtr minimum(NodePtr node) { while (node->left != TNULL) { node = node->left; } return node; } // find the node with the maximum key NodePtr maximum(NodePtr node) { while (node->right != TNULL) { node = node->right; } return node; } // find the successor of a given node NodePtr successor(NodePtr x) { // if the right subtree is not null, // the successor is the leftmost node in the // right subtree if (x->right != TNULL) { return minimum(x->right); } // else it is the lowest ancestor of x whose // left child is also an ancestor of x. NodePtr y = x->parent; while (y != TNULL && x == y->right) { x = y; y = y->parent; } return y; } // find the predecessor of a given node NodePtr predecessor(NodePtr x) { // if the left subtree is not null, // the predecessor is the rightmost node in the // left subtree if (x->left != TNULL) { return maximum(x->left); } NodePtr y = x->parent; while (y != TNULL && x == y->left) { x = y; y = y->parent; } return y; } // rotate left at node x void leftRotate(NodePtr x) { NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } // rotate right at node x void rightRotate(NodePtr x) { NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == nullptr) { this->root = y; } else if (x == x->parent->right) { x->parent->right = y; } else { x->parent->left = y; } y->right = x; x->parent = y; } // insert the key to the tree in its appropriate position // and fix the tree void insert(int key) { // Ordinary Binary Search Insertion NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; // new node must be red NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) { y = x; if (node->data < x->data) { x = x->left; } else { x = x->right; } } // y is parent of x node->parent = y; if (y == nullptr) { root = node; } else if (node->data < y->data) { y->left = node; } else { y->right = node; } // if new node is a root node, simply return if (node->parent == nullptr){ node->color = 0; return; } // if the grandparent is null, simply return if (node->parent->parent == nullptr) { return; } // Fix the tree fixInsert(node); } NodePtr getRoot(){ return this->root; } // delete the node from the tree void deleteNode(int data) { deleteNodeHelper(this->root, data); } // print the tree structure on the screen void prettyPrint() { if (root) { printHelper(this->root, "", true); } } }; int main() { RBTree bst; bst.insert(8); bst.insert(18); bst.insert(5); bst.insert(15); bst.insert(17); bst.insert(25); bst.insert(40); bst.insert(80); bst.deleteNode(25); bst.prettyPrint(); return 0; } |