// C++ program to insert a node in AVL tree #include<bits/stdc++.h> using namespace std; bool DEBUG = false; // An AVL tree node class Node { public: long long int key; Node *left; Node *right; long long int howMany; long long int height; }; // A utility function to get maximum // of two integers long long int max(long long int a, long long int b); // A utility function to get height // of the tree long long int height(Node *N) { if (N == nullptr) return 0; return N->height; } // A utility function to get maximum // of two integers long long int max(long long int a, long long int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ Node* newNode(long long int key) { Node* node = new Node(); node->key = key; node->left = nullptr; node->right = nullptr; node->howMany = 1; node->height = 1; // new node is initially // added at leaf return(node); } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node *rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node *leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N long long int getBalance(Node *N) { if (N == nullptr) return 0; return height(N->left) - height(N->right); } Node* insert(Node* node, long long int key) { /* 1. Perform the normal BST rotation */ if (node == nullptr) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else if (key == node->key) { node->howMany++; return node; } else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ long long int balance = getBalance(node); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ Node * minValueNode(Node* node) { Node* current = node; /* loop down to find the leftmost leaf */ while (current->left != nullptr) current = current->left; return current; } Node* findMaxSzprotkaToEat(Node* root, long long int key) { if(root == nullptr) return nullptr; if(root->key == key) return root; if(root->key > key) return root->left == nullptr ? root : findMaxSzprotkaToEat(root->left, key); if(root->right == nullptr) return root; Node* maxSzprotka = findMaxSzprotkaToEat(root->right, key); if(maxSzprotka->key > key) return root; return maxSzprotka; return root->right == nullptr ? root : findMaxSzprotkaToEat(root->right, key); } // Recursive function to delete a node // with given key from subtree with // given root. It returns root of the // modified subtree. Node* deleteNode1(Node* root, long long int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == nullptr) return root; // If the key to be deleted is smaller // than the root's key, then it lies // in left subtree if ( key < root->key ) root->left = deleteNode1(root->left, key); // If the key to be deleted is greater // than the root's key, then it lies // in right subtree else if( key > root->key ) { root->right = deleteNode1(root->right, key); } // if key is same as root's key, then // This is the node to be deleted // // if(key == root->key and root->howMany > 1) // { // root->howMany --; // return root; // } else { // node with only one child or no child if( (root->left == nullptr) || (root->right == nullptr) ) { Node *temp = root->left ? root->left : root->right; // No child case if (temp == nullptr) { temp = root; root = nullptr; } else // One child case *root = *temp; // Copy the contents of // the non-empty child free(temp); } else { // node with two children: Get the inorder // successor (smallest in the right subtree) Node* temp = minValueNode(root->right); // Copy the inorder successor's // data to this node root->key = temp->key; // Delete the inorder successor root->right = deleteNode1(root->right, temp->key); } } // If the tree had only one node // then return if (root == nullptr) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = 1 + max(height(root->left), height(root->right)); // STEP 3: GET THE BALANCE FACTOR OF // THIS NODE (to check whether this // node became unbalanced) long long int balance = getBalance(root); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } Node* deleteNode(Node* root, long long int key) { Node* toDelete = findMaxSzprotkaToEat(root, key); if(toDelete->howMany > 1) { toDelete->howMany--; return root; } else return deleteNode1(root, key); } // A utility function to print preorder // traversal of the tree. // The function also prints height // of every node void preOrder(Node *root) { if(root != nullptr) { cout << root->key << " x "<< root->howMany << endl; preOrder(root->left); preOrder(root->right); } } void szczupakAttack(Node* &root) { long long int szczupakWeight, szczupakGoal; cin>> szczupakWeight >> szczupakGoal; long long int howManySzprotekHeAte = 0; vector<long long int> eatenSzprotki; while(szczupakWeight < szczupakGoal) { Node* nextSzprotka = findMaxSzprotkaToEat(root, szczupakWeight - 1); if(nextSzprotka == nullptr or nextSzprotka->key >= szczupakWeight) { cout<<"-1"<<endl; for(long long i : eatenSzprotki) { root = insert(root, i); } return; } szczupakWeight += nextSzprotka->key; if(DEBUG)cout<<"found szprotka: "<<nextSzprotka->key<<" "<< szczupakWeight<<endl; eatenSzprotki.push_back(nextSzprotka->key); root = deleteNode(root, nextSzprotka->key); if(DEBUG)preOrder(root); howManySzprotekHeAte++; } cout<< howManySzprotekHeAte<<endl; for(long long i : eatenSzprotki) { root = insert(root, i); } } void addSzprotka(Node* &root) { long long int weight; cin>> weight; root = insert(root, weight); } void removeSzprotka(Node* &root) { long long int weight; cin>> weight; root = deleteNode(root, weight); } int main() { ios_base::sync_with_stdio(false); int howManySzprotek; int numberOfEvents; cin >>howManySzprotek; Node* root = nullptr; long long int weighOfOneSzprotka; for(int i = 0; i < howManySzprotek; i++) { cin>> weighOfOneSzprotka; root = insert(root, weighOfOneSzprotka); } cin>>numberOfEvents; int whatEvent; for(int i = 0; i < numberOfEvents; i++) { if(DEBUG)preOrder(root); cin>> whatEvent; if(whatEvent == 1) szczupakAttack(root); else if (whatEvent == 2) addSzprotka(root); else removeSzprotka(root); // cout<<"number of current event: "<<i<<endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | // C++ program to insert a node in AVL tree #include<bits/stdc++.h> using namespace std; bool DEBUG = false; // An AVL tree node class Node { public: long long int key; Node *left; Node *right; long long int howMany; long long int height; }; // A utility function to get maximum // of two integers long long int max(long long int a, long long int b); // A utility function to get height // of the tree long long int height(Node *N) { if (N == nullptr) return 0; return N->height; } // A utility function to get maximum // of two integers long long int max(long long int a, long long int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ Node* newNode(long long int key) { Node* node = new Node(); node->key = key; node->left = nullptr; node->right = nullptr; node->howMany = 1; node->height = 1; // new node is initially // added at leaf return(node); } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node *rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node *leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N long long int getBalance(Node *N) { if (N == nullptr) return 0; return height(N->left) - height(N->right); } Node* insert(Node* node, long long int key) { /* 1. Perform the normal BST rotation */ if (node == nullptr) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else if (key == node->key) { node->howMany++; return node; } else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ long long int balance = getBalance(node); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ Node * minValueNode(Node* node) { Node* current = node; /* loop down to find the leftmost leaf */ while (current->left != nullptr) current = current->left; return current; } Node* findMaxSzprotkaToEat(Node* root, long long int key) { if(root == nullptr) return nullptr; if(root->key == key) return root; if(root->key > key) return root->left == nullptr ? root : findMaxSzprotkaToEat(root->left, key); if(root->right == nullptr) return root; Node* maxSzprotka = findMaxSzprotkaToEat(root->right, key); if(maxSzprotka->key > key) return root; return maxSzprotka; return root->right == nullptr ? root : findMaxSzprotkaToEat(root->right, key); } // Recursive function to delete a node // with given key from subtree with // given root. It returns root of the // modified subtree. Node* deleteNode1(Node* root, long long int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == nullptr) return root; // If the key to be deleted is smaller // than the root's key, then it lies // in left subtree if ( key < root->key ) root->left = deleteNode1(root->left, key); // If the key to be deleted is greater // than the root's key, then it lies // in right subtree else if( key > root->key ) { root->right = deleteNode1(root->right, key); } // if key is same as root's key, then // This is the node to be deleted // // if(key == root->key and root->howMany > 1) // { // root->howMany --; // return root; // } else { // node with only one child or no child if( (root->left == nullptr) || (root->right == nullptr) ) { Node *temp = root->left ? root->left : root->right; // No child case if (temp == nullptr) { temp = root; root = nullptr; } else // One child case *root = *temp; // Copy the contents of // the non-empty child free(temp); } else { // node with two children: Get the inorder // successor (smallest in the right subtree) Node* temp = minValueNode(root->right); // Copy the inorder successor's // data to this node root->key = temp->key; // Delete the inorder successor root->right = deleteNode1(root->right, temp->key); } } // If the tree had only one node // then return if (root == nullptr) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = 1 + max(height(root->left), height(root->right)); // STEP 3: GET THE BALANCE FACTOR OF // THIS NODE (to check whether this // node became unbalanced) long long int balance = getBalance(root); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } Node* deleteNode(Node* root, long long int key) { Node* toDelete = findMaxSzprotkaToEat(root, key); if(toDelete->howMany > 1) { toDelete->howMany--; return root; } else return deleteNode1(root, key); } // A utility function to print preorder // traversal of the tree. // The function also prints height // of every node void preOrder(Node *root) { if(root != nullptr) { cout << root->key << " x "<< root->howMany << endl; preOrder(root->left); preOrder(root->right); } } void szczupakAttack(Node* &root) { long long int szczupakWeight, szczupakGoal; cin>> szczupakWeight >> szczupakGoal; long long int howManySzprotekHeAte = 0; vector<long long int> eatenSzprotki; while(szczupakWeight < szczupakGoal) { Node* nextSzprotka = findMaxSzprotkaToEat(root, szczupakWeight - 1); if(nextSzprotka == nullptr or nextSzprotka->key >= szczupakWeight) { cout<<"-1"<<endl; for(long long i : eatenSzprotki) { root = insert(root, i); } return; } szczupakWeight += nextSzprotka->key; if(DEBUG)cout<<"found szprotka: "<<nextSzprotka->key<<" "<< szczupakWeight<<endl; eatenSzprotki.push_back(nextSzprotka->key); root = deleteNode(root, nextSzprotka->key); if(DEBUG)preOrder(root); howManySzprotekHeAte++; } cout<< howManySzprotekHeAte<<endl; for(long long i : eatenSzprotki) { root = insert(root, i); } } void addSzprotka(Node* &root) { long long int weight; cin>> weight; root = insert(root, weight); } void removeSzprotka(Node* &root) { long long int weight; cin>> weight; root = deleteNode(root, weight); } int main() { ios_base::sync_with_stdio(false); int howManySzprotek; int numberOfEvents; cin >>howManySzprotek; Node* root = nullptr; long long int weighOfOneSzprotka; for(int i = 0; i < howManySzprotek; i++) { cin>> weighOfOneSzprotka; root = insert(root, weighOfOneSzprotka); } cin>>numberOfEvents; int whatEvent; for(int i = 0; i < numberOfEvents; i++) { if(DEBUG)preOrder(root); cin>> whatEvent; if(whatEvent == 1) szczupakAttack(root); else if (whatEvent == 2) addSzprotka(root); else removeSzprotka(root); // cout<<"number of current event: "<<i<<endl; } return 0; } |