#include <iostream> #include <vector> using LLI = long long int; using namespace std; // An AVL tree node struct node { LLI key; struct node* left; struct node* right; int height; int count; }; // A utility function to get height of the tree LLI height(struct node* N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum of two integers LLI max(LLI a, LLI b) { return (a > b) ? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ struct node* newNode(int key) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially added at leaf node->count = 1; return (node); } // A utility function to right rotate subtree rooted with y // See the diagram given above. struct node* rightRotate(struct node* y) { struct node* x = y->left; struct node* T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. struct node* leftRotate(struct node* x) { struct node* y = x->right; struct node* T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(struct node* N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } struct node* insert(struct node* node, LLI key) { /* 1. Perform the normal BST rotation */ if (node == NULL) return (newNode(key)); // If key already exists in BST, increment count and return if (key == node->key) { (node->count)++; return node; } /* Otherwise, recur down the tree */ if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); /* 2. Update height of this ancestor node */ node->height = max(height(node->left), height(node->right)) + 1; /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ struct node* minValueNode(struct node* node) { struct node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) current = current->left; return current; } LLI FindFishSmallerThan(struct node* root, LLI mass) { struct node* current = root; LLI optimalFish = 0; while (root != NULL) { if (root->key >= mass) { root = root->left; } else if (root->key < mass) { if (optimalFish < root->key) { optimalFish = root->key; } root = root->right; } } return optimalFish; } struct node* deleteNode(struct node* root, LLI key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == NULL) return root; // If the key to be deleted is smaller than the root's key, // then it lies in left subtree if (key < root->key) root->left = deleteNode(root->left, key); // If the key to be deleted is greater than the root's key, // then it lies in right subtree else if (key > root->key) root->right = deleteNode(root->right, key); // if key is same as root's key, then This is the node // to be deleted else { // If key is present more than once, simply decrement // count and return if (root->count > 1) { (root->count)--; return root; } // Else, delete the node // node with only one child or no child if ((root->left == NULL) || (root->right == NULL)) { struct node* temp = root->left ? root->left : root->right; // No child case if (temp == NULL) { temp = root; root = NULL; } else // One child case *root = *temp; // Copy the contents of the non-empty child free(temp); } else { // node with two children: Get the inorder successor (smallest // in the right subtree) struct node* temp = minValueNode(root->right); // Copy the inorder successor's data to this node and update the count root->key = temp->key; root->count = temp->count; temp->count = 1; // Delete the inorder successor root->right = deleteNode(root->right, temp->key); } } // If the tree had only one node then return if (root == NULL) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = max(height(root->left), height(root->right)) + 1; // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether // this node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } int main() { std::ios::sync_with_stdio(false); struct node* root = NULL; int n, q, type, i, j, fishCounter; LLI w, s, k, foundFish = 1; vector<LLI> foundFishes; bool impossible; cin >> n; for (i = 0; i < n; i++) { cin >> w; root = insert(root, w); } cin >> q; for (int j = 0; j < q; j++) { cin >> type; if (type == 1) { cin >> s >> k; fishCounter = 0; foundFishes.clear(); impossible = 0; while (root != NULL && s < k) { foundFish = FindFishSmallerThan(root, s); if (foundFish == 0) { impossible = 1; break; } root = deleteNode(root, foundFish); s += foundFish; fishCounter++; foundFishes.push_back(foundFish); } for (i = 0; i < foundFishes.size(); i++) root = insert(root, foundFishes[i]); if (impossible || s < k) cout << "-1" << endl; else cout << fishCounter << endl; } if (type == 2) { cin >> w; root = insert(root, w); } if (type == 3) { cin >> w; root = deleteNode(root, w); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | #include <iostream> #include <vector> using LLI = long long int; using namespace std; // An AVL tree node struct node { LLI key; struct node* left; struct node* right; int height; int count; }; // A utility function to get height of the tree LLI height(struct node* N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum of two integers LLI max(LLI a, LLI b) { return (a > b) ? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ struct node* newNode(int key) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially added at leaf node->count = 1; return (node); } // A utility function to right rotate subtree rooted with y // See the diagram given above. struct node* rightRotate(struct node* y) { struct node* x = y->left; struct node* T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. struct node* leftRotate(struct node* x) { struct node* y = x->right; struct node* T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(struct node* N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } struct node* insert(struct node* node, LLI key) { /* 1. Perform the normal BST rotation */ if (node == NULL) return (newNode(key)); // If key already exists in BST, increment count and return if (key == node->key) { (node->count)++; return node; } /* Otherwise, recur down the tree */ if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); /* 2. Update height of this ancestor node */ node->height = max(height(node->left), height(node->right)) + 1; /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ struct node* minValueNode(struct node* node) { struct node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) current = current->left; return current; } LLI FindFishSmallerThan(struct node* root, LLI mass) { struct node* current = root; LLI optimalFish = 0; while (root != NULL) { if (root->key >= mass) { root = root->left; } else if (root->key < mass) { if (optimalFish < root->key) { optimalFish = root->key; } root = root->right; } } return optimalFish; } struct node* deleteNode(struct node* root, LLI key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == NULL) return root; // If the key to be deleted is smaller than the root's key, // then it lies in left subtree if (key < root->key) root->left = deleteNode(root->left, key); // If the key to be deleted is greater than the root's key, // then it lies in right subtree else if (key > root->key) root->right = deleteNode(root->right, key); // if key is same as root's key, then This is the node // to be deleted else { // If key is present more than once, simply decrement // count and return if (root->count > 1) { (root->count)--; return root; } // Else, delete the node // node with only one child or no child if ((root->left == NULL) || (root->right == NULL)) { struct node* temp = root->left ? root->left : root->right; // No child case if (temp == NULL) { temp = root; root = NULL; } else // One child case *root = *temp; // Copy the contents of the non-empty child free(temp); } else { // node with two children: Get the inorder successor (smallest // in the right subtree) struct node* temp = minValueNode(root->right); // Copy the inorder successor's data to this node and update the count root->key = temp->key; root->count = temp->count; temp->count = 1; // Delete the inorder successor root->right = deleteNode(root->right, temp->key); } } // If the tree had only one node then return if (root == NULL) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = max(height(root->left), height(root->right)) + 1; // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether // this node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } int main() { std::ios::sync_with_stdio(false); struct node* root = NULL; int n, q, type, i, j, fishCounter; LLI w, s, k, foundFish = 1; vector<LLI> foundFishes; bool impossible; cin >> n; for (i = 0; i < n; i++) { cin >> w; root = insert(root, w); } cin >> q; for (int j = 0; j < q; j++) { cin >> type; if (type == 1) { cin >> s >> k; fishCounter = 0; foundFishes.clear(); impossible = 0; while (root != NULL && s < k) { foundFish = FindFishSmallerThan(root, s); if (foundFish == 0) { impossible = 1; break; } root = deleteNode(root, foundFish); s += foundFish; fishCounter++; foundFishes.push_back(foundFish); } for (i = 0; i < foundFishes.size(); i++) root = insert(root, foundFishes[i]); if (impossible || s < k) cout << "-1" << endl; else cout << fishCounter << endl; } if (type == 2) { cin >> w; root = insert(root, w); } if (type == 3) { cin >> w; root = deleteNode(root, w); } } return 0; } |