1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#include <iostream>
#include <vector>

using LLI = long long int;
using namespace std;

// An AVL tree node 
struct node {
	LLI key;
	struct node* left;
	struct node* right;
	int height;
	int count;
};

// A utility function to get height of the tree 
LLI height(struct node* N)
{
	if (N == NULL)
		return 0;
	return N->height;
}

// A utility function to get maximum of two integers 
LLI max(LLI a, LLI b)
{
	return (a > b) ? a : b;
}

/* Helper function that allocates a new node with the given key and
	NULL left and right pointers. */
struct node* newNode(int key)
{
	struct node* node = (struct node*)
		malloc(sizeof(struct node));
	node->key = key;
	node->left = NULL;
	node->right = NULL;
	node->height = 1; // new node is initially added at leaf 
	node->count = 1;
	return (node);
}

// A utility function to right rotate subtree rooted with y 
// See the diagram given above. 
struct node* rightRotate(struct node* y)
{
	struct node* x = y->left;
	struct node* T2 = x->right;

	// Perform rotation 
	x->right = y;
	y->left = T2;

	// Update heights 
	y->height = max(height(y->left), height(y->right)) + 1;
	x->height = max(height(x->left), height(x->right)) + 1;

	// Return new root 
	return x;
}

// A utility function to left rotate subtree rooted with x 
// See the diagram given above. 
struct node* leftRotate(struct node* x)
{
	struct node* y = x->right;
	struct node* T2 = y->left;

	// Perform rotation 
	y->left = x;
	x->right = T2;

	// Update heights 
	x->height = max(height(x->left), height(x->right)) + 1;
	y->height = max(height(y->left), height(y->right)) + 1;

	// Return new root 
	return y;
}

// Get Balance factor of node N 
int getBalance(struct node* N)
{
	if (N == NULL)
		return 0;
	return height(N->left) - height(N->right);
}

struct node* insert(struct node* node, LLI key)
{
	/* 1.  Perform the normal BST rotation */
	if (node == NULL)
		return (newNode(key));

	// If key already exists in BST, increment count and return 
	if (key == node->key) {
		(node->count)++;
		return node;
	}

	/* Otherwise, recur down the tree */
	if (key < node->key)
		node->left = insert(node->left, key);
	else
		node->right = insert(node->right, key);

	/* 2. Update height of this ancestor node */
	node->height = max(height(node->left), height(node->right)) + 1;

	/* 3. Get the balance factor of this ancestor node to check whether
	   this node became unbalanced */
	int balance = getBalance(node);

	// If this node becomes unbalanced, then there are 4 cases 

	// Left Left Case 
	if (balance > 1 && key < node->left->key)
		return rightRotate(node);

	// Right Right Case 
	if (balance < -1 && key > node->right->key)
		return leftRotate(node);

	// Left Right Case 
	if (balance > 1 && key > node->left->key) {
		node->left = leftRotate(node->left);
		return rightRotate(node);
	}

	// Right Left Case 
	if (balance < -1 && key < node->right->key) {
		node->right = rightRotate(node->right);
		return leftRotate(node);
	}

	/* return the (unchanged) node pointer */
	return node;
}

/* Given a non-empty binary search tree, return the node with minimum
   key value found in that tree. Note that the entire tree does not
   need to be searched. */
struct node* minValueNode(struct node* node)
{
	struct node* current = node;

	/* loop down to find the leftmost leaf */
	while (current->left != NULL)
		current = current->left;

	return current;
}

LLI FindFishSmallerThan(struct node* root, LLI mass)
{
	struct node* current = root;
	LLI optimalFish = 0;

	while (root != NULL) {

		if (root->key >= mass) {
			root = root->left;
		}
		else if (root->key < mass)
		{
			if (optimalFish < root->key)
			{
				optimalFish = root->key;
			}
			
			root = root->right;
		}
	}

	return optimalFish;
}

struct node* deleteNode(struct node* root, LLI key)
{
	// STEP 1: PERFORM STANDARD BST DELETE 

	if (root == NULL)
		return root;

	// If the key to be deleted is smaller than the root's key, 
	// then it lies in left subtree 
	if (key < root->key)
		root->left = deleteNode(root->left, key);

	// If the key to be deleted is greater than the root's key, 
	// then it lies in right subtree 
	else if (key > root->key)
		root->right = deleteNode(root->right, key);

	// if key is same as root's key, then This is the node 
	// to be deleted 
	else {
		// If key is present more than once, simply decrement 
		// count and return 
		if (root->count > 1) {
			(root->count)--;
			return root;
		}
		// Else, delete the node 

		// node with only one child or no child 
		if ((root->left == NULL) || (root->right == NULL)) {
			struct node* temp = root->left ? root->left : root->right;

			// No child case 
			if (temp == NULL) {
				temp = root;
				root = NULL;
			}
			else // One child case 
				*root = *temp; // Copy the contents of the non-empty child 

			free(temp);
		}
		else {
			// node with two children: Get the inorder successor (smallest 
			// in the right subtree) 
			struct node* temp = minValueNode(root->right);

			// Copy the inorder successor's data to this node and update the count 
			root->key = temp->key;
			root->count = temp->count;
			temp->count = 1;

			// Delete the inorder successor 
			root->right = deleteNode(root->right, temp->key);
		}
	}

	// If the tree had only one node then return 
	if (root == NULL)
		return root;

	// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE 
	root->height = max(height(root->left), height(root->right)) + 1;

	// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether 
	// this node became unbalanced) 
	int balance = getBalance(root);

	// If this node becomes unbalanced, then there are 4 cases 

	// Left Left Case 
	if (balance > 1 && getBalance(root->left) >= 0)
		return rightRotate(root);

	// Left Right Case 
	if (balance > 1 && getBalance(root->left) < 0) {
		root->left = leftRotate(root->left);
		return rightRotate(root);
	}

	// Right Right Case 
	if (balance < -1 && getBalance(root->right) <= 0)
		return leftRotate(root);

	// Right Left Case 
	if (balance < -1 && getBalance(root->right) > 0) {
		root->right = rightRotate(root->right);
		return leftRotate(root);
	}

	return root;
}


int main()
{
	std::ios::sync_with_stdio(false);
	struct node* root = NULL;

	int n, q, type, i, j, fishCounter;
	LLI w, s, k, foundFish = 1;
	vector<LLI> foundFishes;
	bool impossible;

	cin >> n;
	
	for (i = 0; i < n; i++)
	{
		cin >> w;
		root = insert(root, w);
	}

	cin >> q;
	
	for (int j = 0; j < q; j++)
	{
		cin >> type;
		if (type == 1)
		{
			cin >> s >> k;
			fishCounter = 0;
			foundFishes.clear();
			impossible = 0;
			while (root != NULL && s < k)
			{
				foundFish = FindFishSmallerThan(root, s);
				if (foundFish == 0)
				{
					impossible = 1;
					break;
				}

				root = deleteNode(root, foundFish);
				s += foundFish;
				fishCounter++;
				foundFishes.push_back(foundFish);
			}

			for (i = 0; i < foundFishes.size(); i++)
				root = insert(root, foundFishes[i]);

			if (impossible || s < k)
				cout << "-1" << endl;
			else
				cout << fishCounter << endl;

		}
		if (type == 2)
		{
			cin >> w;
			root = insert(root, w);
		}
		if (type == 3)
		{
			cin >> w;
			root = deleteNode(root, w);
		}
	}

	return 0;
}