1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include<bits/stdc++.h> 
using namespace std; 

class Node  
{  
    public: 
    long long int key;  
    Node *left;  
    Node *right;  
    long long int height;
    long long int amount;
};  
  
long long int height(Node *N)  
{  
    if (N == NULL)  
        return 0;  
    return N->height;  
}  

long long int max(long long int a, long long int b)  
{  
    return (a > b)? a : b;  
}  

Node* newNode(long long int key)  
{  
    Node* node = new Node(); 
    node->key = key;  
    node->left = NULL;  
    node->right = NULL;  
    node->height = 1; // new node is initially 
                      // added at leaf  
    node->amount = 1;
    return(node);  
}  
 
Node *rightRotate(Node *y)  
{  
    Node *x = y->left;  
    Node *T2 = x->right;  
  
    x->right = y;  
    y->left = T2;  
  
    y->height = max(height(y->left),  
                    height(y->right)) + 1;  
    x->height = max(height(x->left),  
                    height(x->right)) + 1;  
 
    return x;  
}  
   
Node *leftRotate(Node *x)  
{  
    Node *y = x->right;  
    Node *T2 = y->left;  
  
    y->left = x;  
    x->right = T2;  
 
    x->height = max(height(x->left),  
                    height(x->right)) + 1;  
    y->height = max(height(y->left),  
                    height(y->right)) + 1;  

    return y;  
}  
  
long long int getBalance(Node *N)  
{  
    if (N == NULL)  
        return 0;  
    return height(N->left) -  
           height(N->right);  
}  
  
Node* insert(Node* node, long long int key)  
{  
    /* 1. Perform the normal BST rotation */
    if (node == NULL)  
        return(newNode(key));  
  
    if (key < node->key)  
        node->left = insert(node->left, key);  
    else if (key > node->key)  
        node->right = insert(node->right, key);  
    else // Equal keys not allowed  
    {   
        node->amount++;
        return node;  
    }
  
    /* 2. Update height of this ancestor node */
    node->height = 1 + max(height(node->left),  
                           height(node->right));  
  
    /* 3. Get the balance factor of this  
        ancestor node to check whether  
        this node became unbalanced */
    long long int balance = getBalance(node);  
  
    // If this node becomes unbalanced, 
    // then there are 4 cases  
  
    // Left Left Case  
    if (balance > 1 && key < node->left->key)  
        return rightRotate(node);  
  
    // Right Right Case  
    if (balance < -1 && key > node->right->key)  
        return leftRotate(node);  
  
    // Left Right Case  
    if (balance > 1 && key > node->left->key)  
    {  
        node->left = leftRotate(node->left);  
        return rightRotate(node);  
    }  
  
    // Right Left Case  
    if (balance < -1 && key < node->right->key)  
    {  
        node->right = rightRotate(node->right);  
        return leftRotate(node);  
    }  
  
    /* return the (unchanged) node pointer */
    return node;  
}  

Node * minValueNode(Node* node)  
{  
    Node* current = node;  
  
    while (current->left != NULL)  
        current = current->left;  
  
    return current;  
}  

Node* deleteNode(Node* root, long long int key)  
{  
      
    // STEP 1: PERFORM STANDARD BST DELETE  
    if (root == NULL)  
        return root;  
  
    // If the key to be deleted is smaller  
    // than the root's key, then it lies 
    // in left subtree  
    if ( key < root->key )  
        root->left = deleteNode(root->left, key);  
  
    // If the key to be deleted is greater  
    // than the root's key, then it lies  
    // in right subtree  
    else if( key > root->key )  
        root->right = deleteNode(root->right, key);  
  
    // if key is same as root's key, then  
    // This is the node to be deleted  
    else if(root -> amount > 1){
        root->amount--;
        return root;
    }
    else
    {  
        // node with only one child or no child  
        if( (root->left == NULL) || 
            (root->right == NULL) )  
        {  
            Node *temp = root->left ?  
                         root->left :  
                         root->right;  
  
            // No child case  
            if (temp == NULL)  
            {  
                temp = root;  
                root = NULL;  
            }  
            else // One child case  
            *root = *temp; // Copy the contents of  
                           // the non-empty child  
            free(temp);  
        }  
        else
        {  
            // node with two children: Get the inorder  
            // successor (smallest in the right subtree)  
            Node* temp = minValueNode(root->right);  
  
            // Copy the inorder successor's  
            // data to this node  
            root->key = temp->key;  
  
            // Delete the inorder successor  
            root->right = deleteNode(root->right,  
                                     temp->key);  
        }  
    }  
  
    // If the tree had only one node 
    // then return  
    if (root == NULL)  
    return root;  
  
    // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE  
    root->height = 1 + max(height(root->left),  
                           height(root->right));  
  
    // STEP 3: GET THE BALANCE FACTOR OF  
    // THIS NODE (to check whether this  
    // node became unbalanced)  
    long long int balance = getBalance(root);  
  
    // If this node becomes unbalanced,  
    // then there are 4 cases  
  
    // Left Left Case  
    if (balance > 1 &&  
        getBalance(root->left) >= 0)  
        return rightRotate(root);  
  
    // Left Right Case  
    if (balance > 1 &&  
        getBalance(root->left) < 0)  
    {  
        root->left = leftRotate(root->left);  
        return rightRotate(root);  
    }  
  
    // Right Right Case  
    if (balance < -1 &&  
        getBalance(root->right) <= 0)  
        return leftRotate(root);  
  
    // Right Left Case  
    if (balance < -1 &&  
        getBalance(root->right) > 0)  
    {  
        root->right = rightRotate(root->right);  
        return leftRotate(root);  
    }  
  
    return root;  
} 

long long int find_lower(Node* root, long long int key){
    Node* last_right_turn = NULL;
    while(true){

        if(root == NULL)
            if(last_right_turn != NULL)
                return last_right_turn->key;
            else
                return 0;
        if ( key - 1 < root->key ) 
            root = root->left; 
    
        else if( key - 1 > root->key ){
            last_right_turn = root;
            root = root->right;
        }  
        else if(key - 1 == root->key)
            return root->key;
    }

}


int main()  {  
    ios_base::sync_with_stdio(false);
    
    Node *root = NULL;  
    long long int n, q;
    cin>>n;

    for(long long int i = 0; i<n; i++){
        long long int w;
        cin>>w;
        root = insert(root, w);
    }

    cin>>q;

    for(long long int i=0; i<q; i++){
        long long int event;
        cin>>event;
        if(event == 1){
            long long int s, k;
            cin>>s>>k;
            long long int result = 0;
            vector<long long int> fishes;
            while(s < k){
                long long int lower = find_lower(root, s);
                if(lower == 0){
                    result = -1;
                    break;
                }
                fishes.push_back(lower);
                root = deleteNode(root, lower);
                s += lower;
                result++;
            }
            cout<<result<<endl;
            while(fishes.size()>0){
                root = insert(root, fishes.back());
                fishes.pop_back();
            }
        }
        if(event == 2){
            long long int w;
            cin>>w;
            root = insert(root, w);
        }
        if(event == 3){
            long long int w;
            cin>>w;
            root = deleteNode(root, w);
        }
    }
    
    return 0;  
}