#include <iostream> #include <vector> #include <algorithm> #include <set> #include <unordered_map> int next_pow2(int v) { int pow = 1; while (pow < v) { pow *= 2; } return pow; } constexpr int inf = 999999999; struct MaxMaxTree { MaxMaxTree(int _size) : load(next_pow2(_size) * 2) , sub(next_pow2(_size) * 2) , size(_size) { } void insert(int a, int b, int v) { // [a, b] - range includes both ends int l = size + a, r = size + b; load[l] = std::max(load[l], v); sub[l] = std::max(sub[l], v); if (r != l) { load[r] = std::max(load[r], v); sub[r] = std::max(sub[r], v); } while (l >= 1) { if (l < r - 1) { if ((l & 1) == 0) { load[l + 1] = std::max(load[l + 1], v); sub[l + 1] = std::max(sub[l + 1], v); } if ((r & 1) == 1) { load[r - 1] = std::max(load[r - 1], v); sub[r - 1] = std::max(sub[r - 1], v); } } if (r < size) { sub[l] = std::max({ sub[2 * l], sub[2 * l + 1], load[l] }); sub[r] = std::max({ sub[2 * r], sub[2 * r + 1], load[r] }); } l /= 2; r /= 2; } } int query(int a) { if (a < 0 || a >= size) { return inf; } return query(a, a); } int query(int a, int b) { // [a, b] - range includes both ends int l = size + a, r = size + b; int res = -inf; while (l >= 1) { res = std::max({ res, load[l], load[r] }); if (l < r - 1) { if ((l & 1) == 0) { res = std::max(res, sub[l + 1]); } if ((r & 1) == 1) { res = std::max(res, sub[r - 1]); } } l /= 2; r /= 2; } return res; } int size; std::vector<int> load; std::vector<int> sub; }; int main() { int n, m, k; std::cin >> n >> m >> k; auto right = MaxMaxTree(n); auto bottom = MaxMaxTree(m); int x = 0; std::unordered_map<int, std::set<int>> r_ord_todo; // ordered by n-axis (rows) std::unordered_map<int, std::set<int>> c_ord_todo; // ordered by m-axis (cols) while (k--) { int r, c, z; std::cin >> r >> c >> z; r = (r ^ x) % n; c = (c ^ x) % m; // check if (r, c) would "block" trade route int bborder = bottom.query(c - 1); int rborder = right.query(r - 1); bool blocked_bottom = n - bborder <= r + 1; // CHECK IF CORRECT! bool blocked_right = m - rborder <= c + 1; if (blocked_bottom && blocked_right) { // we would end up blocked, // this one needs to be destroyed x ^= z; std::cout << "TAK" << std::endl; continue; } // check if (r, c) borders with any "blocked" regons // and if so, trigger an update // if we are blocked from bottom or right we can // try to merge as many nodes from todo as possible if (blocked_bottom) { if (n - bottom.query(c) > r) { // (r, c) blocks from bottom // search for closest nodes to expand std::set<std::pair<int, int>> todo; todo.emplace(r, c); while (!todo.empty()) { auto [y, x] = *todo.begin(); todo.erase(todo.begin()); bottom.insert(0, x, n - y); // CHECK! r_ord_todo[y].erase(x); c_ord_todo[x].erase(y); auto &r_todo = r_ord_todo[y - 1]; for (auto it = r_todo.begin(); it != r_todo.end() && *it <= x; ++it) { todo.emplace(y - 1, *it); } auto &c_todo = c_ord_todo[x + 1]; for (auto it = c_todo.rbegin(); it != c_todo.rend() && *it >= y - 1; ++it) { todo.emplace(*it, x + 1); } } } } else if (blocked_right) { if (m - right.query(r) > c) { // (r, c) blocks from right // search for closest nodes to expand std::set<std::pair<int, int>> todo; todo.emplace(r, c); while (!todo.empty()) { auto [y, x] = *todo.begin(); todo.erase(todo.begin()); right.insert(0, y, m - x); // CHECK! r_ord_todo[y].erase(x); c_ord_todo[x].erase(y); auto &r_todo = r_ord_todo[y + 1]; for (auto it = r_todo.rbegin(); it != r_todo.rend() && *it >= x; ++it) { todo.emplace(y + 1, *it); } auto &c_todo = c_ord_todo[x - 1]; for (auto it = c_todo.begin(); it != c_todo.end() && *it <= y + 1; ++it) { todo.emplace(*it, x - 1); } } } } else { // add this node on "todo" list r_ord_todo[r].insert(c); c_ord_todo[c].insert(r); } std::cout << "NIE" << std::endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | #include <iostream> #include <vector> #include <algorithm> #include <set> #include <unordered_map> int next_pow2(int v) { int pow = 1; while (pow < v) { pow *= 2; } return pow; } constexpr int inf = 999999999; struct MaxMaxTree { MaxMaxTree(int _size) : load(next_pow2(_size) * 2) , sub(next_pow2(_size) * 2) , size(_size) { } void insert(int a, int b, int v) { // [a, b] - range includes both ends int l = size + a, r = size + b; load[l] = std::max(load[l], v); sub[l] = std::max(sub[l], v); if (r != l) { load[r] = std::max(load[r], v); sub[r] = std::max(sub[r], v); } while (l >= 1) { if (l < r - 1) { if ((l & 1) == 0) { load[l + 1] = std::max(load[l + 1], v); sub[l + 1] = std::max(sub[l + 1], v); } if ((r & 1) == 1) { load[r - 1] = std::max(load[r - 1], v); sub[r - 1] = std::max(sub[r - 1], v); } } if (r < size) { sub[l] = std::max({ sub[2 * l], sub[2 * l + 1], load[l] }); sub[r] = std::max({ sub[2 * r], sub[2 * r + 1], load[r] }); } l /= 2; r /= 2; } } int query(int a) { if (a < 0 || a >= size) { return inf; } return query(a, a); } int query(int a, int b) { // [a, b] - range includes both ends int l = size + a, r = size + b; int res = -inf; while (l >= 1) { res = std::max({ res, load[l], load[r] }); if (l < r - 1) { if ((l & 1) == 0) { res = std::max(res, sub[l + 1]); } if ((r & 1) == 1) { res = std::max(res, sub[r - 1]); } } l /= 2; r /= 2; } return res; } int size; std::vector<int> load; std::vector<int> sub; }; int main() { int n, m, k; std::cin >> n >> m >> k; auto right = MaxMaxTree(n); auto bottom = MaxMaxTree(m); int x = 0; std::unordered_map<int, std::set<int>> r_ord_todo; // ordered by n-axis (rows) std::unordered_map<int, std::set<int>> c_ord_todo; // ordered by m-axis (cols) while (k--) { int r, c, z; std::cin >> r >> c >> z; r = (r ^ x) % n; c = (c ^ x) % m; // check if (r, c) would "block" trade route int bborder = bottom.query(c - 1); int rborder = right.query(r - 1); bool blocked_bottom = n - bborder <= r + 1; // CHECK IF CORRECT! bool blocked_right = m - rborder <= c + 1; if (blocked_bottom && blocked_right) { // we would end up blocked, // this one needs to be destroyed x ^= z; std::cout << "TAK" << std::endl; continue; } // check if (r, c) borders with any "blocked" regons // and if so, trigger an update // if we are blocked from bottom or right we can // try to merge as many nodes from todo as possible if (blocked_bottom) { if (n - bottom.query(c) > r) { // (r, c) blocks from bottom // search for closest nodes to expand std::set<std::pair<int, int>> todo; todo.emplace(r, c); while (!todo.empty()) { auto [y, x] = *todo.begin(); todo.erase(todo.begin()); bottom.insert(0, x, n - y); // CHECK! r_ord_todo[y].erase(x); c_ord_todo[x].erase(y); auto &r_todo = r_ord_todo[y - 1]; for (auto it = r_todo.begin(); it != r_todo.end() && *it <= x; ++it) { todo.emplace(y - 1, *it); } auto &c_todo = c_ord_todo[x + 1]; for (auto it = c_todo.rbegin(); it != c_todo.rend() && *it >= y - 1; ++it) { todo.emplace(*it, x + 1); } } } } else if (blocked_right) { if (m - right.query(r) > c) { // (r, c) blocks from right // search for closest nodes to expand std::set<std::pair<int, int>> todo; todo.emplace(r, c); while (!todo.empty()) { auto [y, x] = *todo.begin(); todo.erase(todo.begin()); right.insert(0, y, m - x); // CHECK! r_ord_todo[y].erase(x); c_ord_todo[x].erase(y); auto &r_todo = r_ord_todo[y + 1]; for (auto it = r_todo.rbegin(); it != r_todo.rend() && *it >= x; ++it) { todo.emplace(y + 1, *it); } auto &c_todo = c_ord_todo[x - 1]; for (auto it = c_todo.begin(); it != c_todo.end() && *it <= y + 1; ++it) { todo.emplace(*it, x - 1); } } } } else { // add this node on "todo" list r_ord_todo[r].insert(c); c_ord_todo[c].insert(r); } std::cout << "NIE" << std::endl; } return 0; } |